1

Quality Assurance Handbook:
Part 6: Quality Assurance For Software
This handbook provides advice and support for projects funded by JISC’s digital library programmes. The handbook provides advice for projects in their choice of standards, best practices and implementation architectures. The handbook provides a quality assurance methodology which will help to ensure that projects funded by JISC’s digital library programmes are interoperable and widely accessible.

This handbook addresses the issue of software.

[image: image2.png]: ahds I

Authors
QA Focus team at UKOLN and AHDS

[image: image3.png]

Publication date:
16 August 2004

Version:
1.0
Table Of Contents

11
Introduction

1Background

1About QA Focus

1Scope Of QA Focus

2The QA Focus Team

32
About This Handbook

43
Briefing Papers On Software

5Top Tips For Selecting Open Source Software

8Software Code Development

11Creating and Testing Web Forms

13Making Software Changes to a Web Site

15Top 10 Tips For Database Design

17Top Tips For Resolving Poor Performance in Database Design

194
Case Studies On Software

20Error Detection on the UKOLN Web Site

235
Software Toolkit

23Software Toolkit

256
Further Information

25OSS Watch

26Acknowledgements

1
Introduction

Background

Welcome to QA Focus’s “Quality Assurance For Software” Handbook. This handbook has been published by the JISC-funded QA Focus project. The handbook provides advice on compliance with the standards and best practices in the area of software.

About QA Focus

QA Focus has funded by the JISC to help develop quality assurance methodology which projects funded by JISC’s digital library programmes should seek to implement in order to ensure that project deliverables comply with appropriate standards and best practices which. This will help to ensure that project deliverables and widely accessible and interoperable and to facilitate the deployment of deliverables into a service environment.

The approach taken by QA Focus has been developmental: rather than seeking to impose requirements on projects, which are being undertaken by many institutions across the country, with differing backgrounds and levels of funding and resources, we have sought to raise an awareness of JISC’s commitment to use of open standards, to describe various technical frameworks which can help in deploying open standards and to outline ways of ensuring that selected standards and used in a compliance fashion.

We do, however, recognise the difficulties which projects may experience in implementing open standards (such as, for example, the immaturity of standards or the poor support for standards by tool vendors; the resource implications in implementing some of the standards; etc.). We have sought to address such concerns by developing a matrix framework to assist in the selection of standards which are appropriate for use by standards, in the light of available funding, available expertise, maturity of standard, etc.

We hope that the wide range of advice provided in this handbook will be valuable to projects. However the most important aspect of this handbook is the quality assurance QA methodology which is outlined in the handbook. The QA methodology has been developed with an awareness of the constraints faced by projects. We have sought to develop a light-weight QA methodology which can be easily implemented and which should provide immediate benefits to projects during the development of their deliverables as well as ensuring interoperability and ease of deployment into service which will help to ensure the maximum effectiveness of JISC’s overall digital library development work.

Scope Of QA Focus

QA Focus seeks to ensure technical interoperability and maximum accessibility of project deliverables. QA Focus therefore has a focus on the technical aspects of project’s work.

Our remit covers the following technical aspects:

Digitisation: The digitisation of resources, including text, image, moving image and sound resources.

Access: Access to resources, with particular references to access using the Web.

Metadata: The use of metadata, such as resource discovery metadata.

Software development: The development and deployment of software applications.

Service deployment: Deployment of project deliverables into a service environment.

In addition to these core technical areas we also address:

Standards: The selection and deployment of standards for use by projects.

Quality assurance: The development of quality assurance procedures by projects.

QA Focus’s was originally funded to support JISC’s 5/99 programme. However during 2003 our remit was extended to support JISC’s FAIR and X4L in addition to 5/99.

The QA Focus Team

QA Focus began its work on 1 January 2002. Initially the service was provided by UKOLN and ILRT, University of Bristol. However, following ILRT’s decision to re-focus on their core activities they left QA Focus and were replaced by the AHDS on 1 January 2003.

This handbook has been developed by the current QA Focus team members: Brian Kelly, UKOLN (QA Focus project leader), Amanda Closier (QA Focus officer), Marieke Guy, UKOLN (former QA Focus officer), Hamish James, AHDS (QA Focus project leader at AHDS) and Gareth Knight (QA Focus officer).

2
About This Handbook

This handbook provides advice on best practices for use of software.

The handbook forms part of a series of Quality Assurance handbooks, which cover the areas which have been addressed by QA Focus work:

Part 1: About Quality assurance: The development of quality assurance procedures by projects.

Part 2: Quality Assurance For Standards: The selection and deployment of standards for use by projects.

Part 3: Quality Assurance For Digitisation: The digitisation of resources, including text, image, moving image and sound resources.

Part 4: Quality Assurance For Web/Access: Access to resources, especially access using the Web.

Part 5: Quality Assurance For Metadata: The use of metadata, such as resource discovery metadata.

Part 6: Quality Assurance For Software: Development and deployment of software applications.

Part 7: Quality Assurance For Service Deployment: Deployment of project deliverables into a service environment.

Part 8: Quality Assurance In Other Areas: Quality assurance in areas not covered elsewhere.

The handbook consists of three main sections:

Briefing Documents: Brief, focussed advice on best practices.

Case studies: Descriptions of the approaches taken by projects to the deployment of best practices.

Toolkit: Self-assessment checklists which can help ensure that projects have addressed the key areas.

3
Briefing Papers On Software

Background

This section addresses the area of software. The briefing documents seek to describe best practices in this area.

Briefing Documents

The following briefing documents which address the area of software have been produced:

· Top Tips For Selecting Open Source Software (briefing-60)

· Software Code Development (briefing-13)

· Creating and Testing Web Forms (briefing-14)

· Making Software Changes to a Web Site (briefing-19)

· Top 10 Tips For Database Design (briefing-48)

· Top 10 Tips For Resolving Poor Performance in Database Design (briefing-49)

· Improving Interoperability Between Multiple Databases (briefing-50)

Advisory documents which cover specific technical areas are available within the section on the appropriate technical area.

Case Studies

The following case studies which address the area of software have been produced:

· Error Detection on the UKOLN Web site (case-study-14)

Case studies which cover specific technical areas are available within the section on the appropriate technical area.

Top Tips For Selecting Open Source Software
About This Document

This briefing document provides tips on selecting open source software.

Citation Details

Top Tips For Selecting Open Source Software, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/briefings/briefing-60/>

Keywords: software, open source, tips, briefing

About This Document

Performance and reliability are the principal criteria for selecting software. In most procurement exercises however, price is also a determining factor when comparing quotes from multiple vendors. Price comparisons do have a role, but usually not in terms of a simple comparison of purchase prices. Rather, price tends to arise when comparing “total cost of ownership” (TCO), which includes both the purchase price and ongoing costs for support (and licence renewal) over the real life span of the product.

This document provides tips about selecting open source software.

Top Tips

Reputation
Does the software have a good reputation for performance and reliability? Here, word of mouth reports from people whose opinion you trust is often key. Some open source software has a very good reputation in the industry, e.g. Apache web server, GNU Compiler Collection (GCC), Linux, Samba etc. You should be comparing “best of breed” open source software against its proprietary peers. Discussing your plans with someone with experience using open source software and an awareness of the packages you are proposing to use is vital.

Ongoing effort

Is there clear evidence of ongoing effort to develop the open source software you are considering? Has there been recent work to fix bugs and meet user needs? Active projects usually have regularly updated web pages and busy development email lists. They usually encourage the participation of those who use the software in its further development. If everything is quiet on the development front, it might be that work has been suspended or even stopped.

Standards and interoperability

Choose software which implements open standards. Interoperability with other software is an important way of getting more from your investment. Good software does not reinvent the wheel, or force you to learn new languages or complex data formats.

Support (Community)

Does the project have an active support community ready to answer your questions concerning deployment? Look at the project's mailing list archive, if available. If you post a message to the list and receive a reasonably prompt and helpful reply, this may be a sign that there is an active community of users out there ready to help. Good practice suggests that if you wish to avail yourself of such support, you should also be willing to provide support for other members of the community when you are able.

Support (Commercial)

Third party commercial support is available from a diversity of companies, ranging from large corporations such as IBM and Sun Microsystems, to specialist open source organizations such as Red Hat and MySQL, to local firms and independent contractors. Commercial support is most commonly available for more widely used products or from specialist companies who will support any product within their particular specialism.

Version
When was the last stable version of the software released? Virtually no software, proprietary or open source, is completely bug free. If there is an active development community, newly discovered bugs will be fixed and patches to the software or a new version will be released. For enterprise use, you need the most recent stable release of the software, be aware that there may have been many more recent releases in the unstable branch of development. There is, of course, always the option of fixing bugs yourself, since the source code of the software will be available to you. But that rather depends on your (or your team's) skill set and time commitments.

Version 1.0

Open source projects usually follow the “release early and often” motto. While in development they may have very low version numbers. Typically a product needs to reach its 1.0 release prior to being considered for enterprise use. (This is not to say that many pre-”1.0” versions of software are not very good indeed, e.g. Mozilla's 0.8 release of its Firefox browser.)

Documentation

Open source software projects may lag behind in their documentation for end users, but they are typically very good with their development documentation. You should be able to trace a clear history of bug fixes, feature changes, etc. This may provide the best insight into whether the product, at its current point in development, is fit for your purposes.

Skill set

Consider the skill set of yourself and your colleagues. Do you have the appropriate skills to deploy and maintain this software? If not, what training plan will you put in place to match your skills to the task? Remember, this is not simply true for open source software, but also for proprietary software. These training costs should be included when comparing TCOs for different products.

License

Arguably, open source software is as much about the license as it is about the development methodology. Read the license. Well-known licenses such as the General Public License (GPL) and the Lesser General Public License (LGPL) have well defined conditions for your contribution of code to the ongoing development of the software or the incorporation of the code into other packages. If you are not familiar with these licenses or with the one used by the software you are considering, take the time to clarify conditions of use.

Coverage

Many open source products are generalist and must be specialised before use. Generally speaking the more effort required to specialise a product, the greater is its generality. A more narrowly focused product will reduce the effort require to deploy it, but may lack flexibility. An example of the former is GNU Compiler Collection (GCC), and an example of the latter might be Evolution email client, which works well “out of the box” but is only suitable for the narrow range of tasks for which it was intended.

Useful URLs

The Open Source Software Definition <http://www.opensource.org/docs/definition.php>, which sets out the distribution terms for software to count as open source.

The Free Software Definition <http://www.gnu.org/philosophy/free-sw.html> which clarifies the sense of “free” that relates to the freedom to run, distribute and change the software.

The Cathedral and the Bazaar <http://www.catb.org/~esr/writings/cathedral-bazaar/> the classic text on open source development methodologies.

Open Sources: Voices from the Open Source Revolution <http://www.oreilly.com/catalog/opensources/book/toc.html> with essays from many of the important figures in the free software and open source movements.

SourceForge.net <http://sourceforge.net/> which is a repository of thousands of open source projects.

Further Information

OSS Watch, <http://www.oss-watch.ac.uk/>, is the open source software advisory service for UK higher and further education. It provides neutral and authoritative guidance on free and open source software, and about related open standards.

Software Code Development

About This Document

This briefing document provides high-level advice for software developers.

Citation Details

Software Code Development, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/briefings/briefing-13/>

Keywords: software, software development, briefing

About

This document gives high-level advice for people who develop software for use either internally within a project or for use externally as a project deliverable.

Background

Each computer programming language has its own coding conventions. However there are a number of general points that you can follow to ensure that your code is well organised and can be easily understood by others. These guidelines are not in any way mandatory but attempt to formalise code so that reading, reusing and maintaining code is easier. Most coding standards are arbitrary but adopting some level of consistency will help create better software.

The key point to remember is that good QA practice involves deciding on and recording a number of factors with your programming team before the onset of your project. Having such a record will allow you to be consistent.

Documentation

In order for programmers to use your software it is important that you include clear documentation. This documentation will take the form of internal and external documentation.

· External documentation: should explain how the software will be used. Internal documentation explains how to implement the code.

· Comments: Comments should be added to your code to explain implementation details of the source code. Avoid adding obvious or lengthy information. Prior to your project you should agree on how frequent comments should be and their location, format and length in the file. These conventions may need to be agreed on for block, single-line and end-of-line comments.

· Readme file: Every software package should contain a readme file describing and the purpose and functionality of the software and information on external dependencies.

Naming Conventions

Naming conventions of files, procedures and variables etc. should be sensible and meaningful and agreed on before the projects starts. Use of capitalisation may vary in different programming languages but it is sensible to avoid names that differ only in case or look very similar. Also avoid names that conflict with standard library names.
Code

There are a number of key points to remember when writing your code:

· Linearity: If using a procedural language ensure your code is linear and starts at the first executable statement and continues to a final return or end of block statement.

· If constructs: Avoid complicated "if" constructs. It is better to use several simpler nested "if" constructs than a complicated compound one. Keep it simple.

· Layout: Code layout is very important. It should be formatted to provide visual clues to the flow of the implementation. It is useful to agree on factors such as indentation, location of brackets, use of white space and line spacing used before the project starts. For example how long will your lines be? Will you use tabs or spaces?

· External Constants: Define constant values outside of the code as this makes maintenance easier. Changing hard-coded constants can be time-consuming and prone to human error.

· Error Handling: It is also important that you write in some form of error handling into the code.

· Portability: Portable code allows the source file to be compiled with any compiler and executed on any machines and operating system. Creating portable code is fairly complex. It is useful to keep machine dependent and machine independent code in separate files.

Standards

Standards are “documented agreements containing technical specifications or other precise criteria to be used consistently as rules, guidelines, or definitions of characteristics, to ensure that materials, products, processes and services are fit for their purpose” (ISO 1997). The aim of international standards is to encapsulate most appropriate current practice. The International Organization for Standardization (ISO) is the head of all national standardisation bodies. The most relevant ISO standard for software code development is ISO 9000-3: 1997 (QA for the development, supply, installation and maintenance of computer software). For other relevant standards also check the Institute of Electrical and Electronics Engineers and the American National Standards Institute.

Project QA

At the start of development it may help to ask your team the following questions:

· Do you have local guidelines for writing code?

· Are your software staff aware of the conventions to be used?

· Do you have procedures in place for use when creating local software?

References

1. International Organization for Standardization (ISO), <http://www.iso.ch/>

2. Institute of Electrical and Electronics Engineers (IEEE), <http://www.ieee.org/>

3. American National Standards Institute (ANSI), <http://www.ansi.org/>

Further information on software QA is available from Sticky Minds, <http://www.stickyminds.com/>

Creating and Testing Web Forms

About This Document

This briefing document provides advice on the design of Web forms.

Citation Details

Creating and Testing Web Forms, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/briefings/briefing-14/>

Keywords: software, software testing, forms, briefing

Background

A Web form is not dissimilar in appearance and use to a paper form. It appears on a Web page and contains special elements called controls along with normal text and mark up. These controls can take the form of checkboxes, text boxes, radio buttons, menus, etc. Users generally fill in the form by entering text and selecting menu items and then submit the form for processing. The agent could be an email or Web server.

Web forms have a variety of uses and are a way to get specific pieces of information from the user. Web sites with forms have their own specific set of problems and need vigorous testing to ensure that they work.

Designing Forms

Some of the key things to consider when designing your form are:

Mandatory Fields

Making fields compulsory can cause problems. Occasionally a user may feel that the question you have asked is inappropriate in context or they just can’t provide the information. You need to decide if the information needed is absolutely necessary. Users will be more likely to give information if you explain why the data that you're asking for is needed. It is acceptable to ask the user if they meant to leave out a piece of information and then accept their answer.

Validation of forms can be carried out either client side or by processing on the server. Client side validation requires the use of a scripting language like JavaScript and can be problematic if the user’s browser disallows scripting. However server side validation can be more complicated to set up.

Drop Down Lists
Sometimes the categories you offer in a drop down list do not match the answer that the user wants to give you. Sites from the USA often ask for states, which UK users cannot provide. If you want to use a drop down list make sure that your error messages are helpful rather than negative and allow users to select an ‘other’ option. If you have given a good selection of categories then you should rarely get users picking this.

Also consider if the categories you have provided are subjective enough. There may be issues over the terms used to refer to particular countries (for example if a land area is disputed. If you have to provide a long drop down list then it might be worth offering the common categories first. You could also try sub dividing the categories into two-drop downs where the selection from the first dynamically creates the options in the second.

Separate Display
You may wish to have the user see a new page or sidebar when filling in a form. A new page may be easier to look at but can be annoying if it is perceived as a diversion or, even worse, an advertisement. It may also be prevented from opening by window blocking software available on newer browsers.

User Errors

Users will often make typing or transcription errors when filling a form in. These errors can occur in any free text fields on the form.

Occasionally users will press the Submit or Send button either deliberately or inadvertently when only part-way through the form. Make sure that you have an appropriate error message for this and allow users to go back to the unfinished form. Users also often fill in part of a form and then click on the back button. They may be doing this to lose the data they have filled in, to check previous data or because they think they have finished. These activities suggest poor user interface design.

It is important to provide a helpful message on the submission screen explaining the form has been submitted successfully. You could also give replicate the details inputted for users to print out as hard copy.

Testing Forms

Once you have created your Web form you need to test it thoroughly before release. There are a number of different free software products available that will help you with your testing. Tools such as Roboform [1] are freely available and can be used to store test data in and automatically fill in your forms with data.

When testing your form it is worth bearing in mind some problem areas

· Character sets: If you require users to fill in their names you will have to be ready to deal with different character sets. Creating different characters to test with can be problematic but services such as BabelMap [2] can help with this.

· Checking Scripts: Be sure to check you common gateway interface (CGI), server-side scripts and client-side scripts by submitting and resetting form data.

· Tab Order: Often when creating a form information is moved about. That is why it is important that you check the tab order of your form. Tab order is especially important for people using screen readers.

References

1. Roboform, <http://www.roboform.com/>

2. BabelMap, <http://uk.geocities.com/BabelStone1357/Software/BabelMap.html>

Making Software Changes to a Web Site

About This Document

This briefing document describes the approaches you should take when you need to make software changes to a Web site.

Citation Details

Making Software Changes to a Web Site, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/briefings/briefing-19/>

Keywords: software, software changes, Web, briefing

Background

It is desirable to minimise the time a Web site is unavailable. However it may be necessary to bring a Web server down in order to carry out essential maintenance. This document lists some areas to consider if you wish to minimum down time.

Planning

The key to any form of critical path situation is planning. Planning involves being sure about what needs to be done and being clear about how it can be done. Quality Assurance is vital at this stage and final ‘quality’ checking is often the last act before a site goes live or a new release is launched.

Prior to Down Time:

· Collect statistics on your site and find out what time and on what day it has the least number of visitors and activity. If it is possible (staff allowing) choose this time to take the site offline

· Before bringing the site down hold a meeting. At this draw up a schedule of what needs to be done and who will complete each task. Create a checklist of testing to be done.

· If the whole site will be offline post a maintenance page stating that our site will be down temporarily. Make sure this page is created in advance.

During Down Time:

· Make all modifications to the site such as installing new software, changing databases, etc.

· Review all configuration settings and check that the correct files are in place.

· Check all server services are running. Ensuring services such as secure sockets layer (SSL) are running is vital if you are working in a business environment.

· Check any INI, property files, or other configuration files that may have been changed. A list of configuration file that may change could be created prior to down time.

· Use the checklist to check all other relevant change areas. You should look at:

· Visual changes – you could add icons to new pages

· Functionality changes

· Run some general user tests, such as ordering a book, retrieving information from the database, submitting a form. It is worth anticipating in advance some Scenario-specific check areas that can be looked at.

After Down Time:

· Again run some general user tests. These should be run from inside and outside your firewall and on a variety of PCs, browsers etc.

· Check that all links to third parties are running.

· Keep an eye on how the site runs for the next few days and watch for cracks.

· It is important that all the technical support team are notified of any changes that have been made and a problem reporting system is in place.

· Have some form of software or system installed that can inform you of unexpected down time or errors [1]. A list of the type of tools that can be used is available from the QA Focus database [2].

Conclusions

Advance preparation is vital if you want to minimise time your site down time and avoid confusion when installing new releases.

References

1. Error Detection on the UKOLN Web site, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/case-studies/case-study-14/>

2. QA Focus Database - Web Site Testing Tools, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/qa-projects/searchtoolkit.asp>

Top 10 Tips For Database Design
About This Document

This briefing document provides tips on the design of databases.

Citation Details

Top 10 Tips For Database Design, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/briefings/briefing-48/>

Keywords: database, design, tips, briefing

About This Document

This document provides 10 tips which can help to ensure that databases can be easily exported and manipulated with the minimum of difficulties.

The Top 10 Tips

1. Develop A Prototype

Significant time can be saved by creating the structure in a simple desktop database (such as Microsoft Access) before finalising the design in one of the enterprise databases. The developer will be able to recognise simple faults and makes changes more rapidly than would be possible at a later date.
2. Split database structure into multiple tables

Unlike paper-based structures, databases do not require the storage of all fields in a single table. For large databases it is useful to split essential information into multiple tables. Before creating a database, ensure that the data has been normalised to avoid duplication.
3. Use understandable field names

The developer should avoid field names that are not instantly recognisable. Acronyms or internal references will confuse users and future developers who are not completely familiar with the database.

4. Avoid illegal file names

It is considered good practice to avoid exotic characters in file or field names. Exotic characters would include ampersands, percentages, asterisks, brackets and quotation marks. You should also avoid spaces in field and table names.

5. Ensure Consistency

Remain consistent with data entry. If including title (Mr, Miss, etc.) include it for all records. Similarly, if you have established that house number and address belong in different fields, always split them.

6. Avoid blank fields

Blank fields can cause problems when interpreting the data at a later date. Does it mean that you have no information, or you have forgotten to enter the information? If information is unavailable it is better to provide a standard response (e.g. unknown).

7. Use standard descriptors for date and time

Date and time can be easily confused when exporting database fields in a text file. A date that reads ‘12/04/2003’ can have two meanings, referring to April 12th or December 4th, 2003. To avoid ambiguity always enter and store dates with a four-digit century and times of day using the 24 hour clock. The ISO format (yyyy-mm-dd) is useful for absolute clarity, particularly when mixing databases at a later date.

8. Use currency fields if appropriate

Currency data types are designed for modern decimal currencies and can cause problems when handling old style currency systems, such as Britain’s currency system prior to 1971 that divided currency into pounds, shillings and pence.
9. Avoid proprietary extensions

Care should be taken when using proprietary extensions, as their use will tie your database to a particular software package. Examples of proprietary extensions include the user interface and application-specific commands.

10. Avoid the use of field dividers

Commas, quotation marks and semi-colons are all used as methods of separating fields when databases are exported to a plain text file and subsequently re-imported into another database. When entering data into a database you should choose an alternative character that represents these characters.
Further Information

· SQL Course, <http://www.sqlcourse.com/>

· A Tutorial on Basic Normalization, Part 1-9, <http://www.datawarehouse.com/article/?articleid=2983>

Top Tips For Resolving Poor Performance in Database Design
About This Document

This briefing document provides tips on resolving performance problems cased by database design issues.

Citation Details

Top 10 Tips For Resolving Poor Performance in Database Design, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/briefings/briefing-49/>

Keywords: database, design, performance, tips, briefing

About This Document

This document provides 10 tips which can help to ensure that databases can be easily exported and manipulated with the minimum of difficulties.

The Top Tips

1. Normalise the database structure

The majority of database performance issues are caused by un-normalised or partially normalised data. Normalisation is the technique used to simplify database design in a way that removes redundant data and improves the efficiency of the database design. It consists of three levels (1st, 2nd and 3rd) normal forms that require the removal of duplicate information, removal of partial (when the value in a field is dependent on part of the primary key) and transitive (when the value in one non-key field is dependent on the value in another non-key field) dependencies.

2. Create an index

70-80 percent of good SQL performance can be attributed to proper and efficient indexes. Indexes are used to provide fast and efficient access paths to data, to enforce uniqueness on column values, to contain primary key values, to cluster data, and to partition tables.

3. Ensure the indexes are being used consistently

Indexes have many benefits, but they have disadvantages. Each index requires storage space and must be modified each time a new row is inserted or deleted, as well as each time a column value in the key is updated. You should ensure that indexes are only used when necessary. In many circumstances it may be more appropriate to modify the structure of an existing one? Use the EXPLAIN statement to find the access path chosen by the optimiser.

4. Check the query

Ensure the query is structured correctly by rechecking the WHERE clause. Are the host variables defined correctly and are the predicates designed to use existing indexes?

5. Avoid unnecessary sorting of data

Unnecessary data sorting can have a detrimental impact on processing speed. You should ensure that all sorts (ORDER BY, GROUP BY, UNION, UNION ALL, joins, DISTINCT) only refer to the necessary data.

6. Avoid unnecessary sorting of data

Unnecessary data sorting can also have a detrimental impact upon processing speed. You should ensure that all sorts (ORDER BY, GROUP BY, UNION, UNION ALL, joins, DISTINCT) only refer to the necessary data.

7. Avoid unnecessary row counts

When developing stored procedures (a series of SQL commands), use the SET NOCOUNT ON option at the start of your procedure. This will prevent the superfluous "row count" messages from being generated, and will improve performance by eliminating wasted network traffic.
8. Check table joins

Remove unnecessary JOINS and sub queries: would the application be more efficient without the join or sub-query; are simple or multiple queries more efficient?

9. Check connection delays when connecting to an external database

Many problems can be encountered when connecting to an organisational database from home or anywhere outside the faculty. Many delays are caused by DNS lookup timeout. Check that the database server can resolve the IP address. If the intervening firewall uses NAT, then the IP address will match the firewall's interface closest to the database server. If you are troubleshooting the connection, gather more information using ‘tcpdump’ and examine the packet timings to determine where the delay is occurring.
10. Think about the database location

Many performance issues are caused by the host application rather than the database itself. When identifying performance issues it is useful to perform an Internet search using application keywords to identify problematic combinations. For example, tests have found that the use of a MS Access database run from a NetWare server can dramatically increase the query time if the database is not stored in the drive root.
11. Export queries in desktop databases if necessary

Though it is theoretically possible to use SQL (Structured Query Language) script files between databases, the range of implementations in desktop databases differ. This may cause significant delays. In practice code needs to be recreated altered to account for implementation differences.
Further Information

· SQL Course, <http://www.sqlcourse.com/>

· A Tutorial on Basic Normalization, Part 1-9, <http://www.datawarehouse.com/iknowledge/articles/>

4
Case Studies On Software

Background

This section addresses the area of software. The case studies seek to describe best practices in this area.

Case Studies

The following case studies which address the area of software have been produced:

· Error Detection on the UKOLN Web site (case-study-14)

Case studies which cover specific technical areas are available within the section on the appropriate technical area.

Error Detection on the UKOLN Web Site

About This Document

This case study describes the approaches taken on the UKOLN Web site to the detection of software problems.

Citation Details

Error Detection on the UKOLN Web Site, QA Focus, UKOLN,
<http://www.ukoln.ac.uk/qa-focus/documents/case-studies/case-study-14/>

Related Documents

See also the Making Software Changes to a Web Site (briefing-19) briefing documents.

Keywords: Web, software, errors, error detection, case study

Background

The UKOLN Web [1] site runs off a number of different Apache and IIS servers at the University of Bath. There are now thousands of pages on the site, which are maintained by a number of different people.

Problem Being Addressed

CGI scripts and forms are used occasionally on the site, for example for booking forms for conferences. Sometimes scripts and the forms connected with them get broken by people moving files, editing scripts and by out of date data. In addition errors may occur when the end user inputs unexpected or illegal data, if another service such as a back end database, fails. In this way, script errors may be indicators of larger problems that need to be quickly addressed.

It was previously impossible to locate specific errors unless a user emailed the site to let tell the Web master that a script error was appearing on a Web page.

The Approach Taken

It was decided that a new internal server error page would be created which would allow the Web support team to establish what and where problems are happening. The error page would also generate an email to the Web support mailing list saying what had happened and why.

When the support team receives these emails they then decide if this is a problem that requires immediate attention, or, as is sometimes the case if this was a "correct" error. For example, if a robot visits a script and attempts to access the script in an unexpected way, it is entirely appropriate that the robot should see an error. Not all server errors are bad.

The internal-server-error.cgi script created was fairly simple. The process involves:

· Reading a template for the page delivered to the end user.

· Creating a message to mail to support based on the environment of the Apache server.

· Creating a message to merge with the template and send to the user.

· Printing a template message to browser.

· Sending an email message to support.

A template was used for the HTML so the look and feel could be edited. Once broken CGI scripts were reported the responsibility for changing the page then lies with the owner of that page to remove or repair the particular script.

Report Information

The report information sent to the Web support team includes the following information:

Internal Server Error - www.ukoln.ac.uk - report follows:
REMOTE_ADDR -> 138.38.32.85

This is the host of the machine running the script, it may be useful to track users who have seen the 500 error message.

REDIRECT_SCRIPT_FILENAME ->/opt/Web/content/www.ukoln.ac.uk/cgi-bin/booking-form.pl

This is the script that is failing, which is very useful to know.

HTTP_X_FORWARDED_FOR -> 138.38.146.50

If the end user is going via a proxy this may show the actual address of their machine.

REDIRECT_HTTP_USER_AGENT -> Mozilla/4.0 (compatible; MSIE 6.0; Windows NT5.0)

It is useful to see if a particular browser is causing an error.

REDIRECT_ERROR_NOTES -> Premature end of scriptheaders: /opt/Web/content/www.ukoln.ac.uk/cgi-bin/booking-form.pl

This is the error message received, which is also logged to the Apache error log.

SCRIPT_URI ->http://www.ukoln.ac.uk/cgi-bin/booking-form.pl

This is the Web page the user was attempting to view that generated the error.

HTTP_REFERER ->http://www.ukoln.ac.uk/events/bath-profile/form.html

This is the page from which the failing script was linked from.

Problems Encountered

The main problem was that after the system was set up there were a lot of error messages being sent to the Web support team, though it was anticipated that this would change as the broken scripts are edited and removed. To address this problem the messages are sent to a separate Web-errors email list from which members of support can opt out.

Things We Would Do Differently

There are various improvements that could be made to the error detection script. Firstly the message could get sent to the server administrator (from the environment variable), which would make it easier to configure the email address of the person to send to, etc.

Another very useful improvement would be for each script on our servers to specify who the error report should go to, however we are unsure if this is configurable. We are currently considering if it would be possible for whoever writes a script to set a particular variable to their username. The error script could then read this and attach this username to the email, such as 'for the attention of xxxusernamexxx'. Or even just send that person the error email.

Once this problem has been tackled it would be helpful to put in place an error logging system that notes who is responsible for fixing the error and marks off when they have done it.

Note: This was initially an RDN [2] development that was re-used by UKOLN.

References

1. UKOLN Web site, <http://www.ukoln.ac.uk/>

2. Resource Discovery Network, <http://www.rdn.ac.uk/>

Contact Details

Pete Cliff and Eddie Young
UKOLN
University of Bath
Bath
BA2 7AY

5
Software Toolkit

Software Toolkit

The Software toolkit provides a checklist which is intended to ensure that projects address key areas when planning the selection, development and/or deployment of software.

Note that an online version of this toolkit is available at <http://www.ukoln.ac.uk/qa-focus/toolkit/>. The online version provides links to relevant QA Focus resources.

	1. Selecting Software

	Does the software have a good reputation for performance and reliability? Is there clear evidence of ongoing effort in the development of the software?

If so, please give brief details.

	

	

	2. Standards and Interoperability

	Does the software support appropriate standards? Has the software been developed to facilitate interoperability?

If so, please give brief details.

	

	

	3. Support

	Does the project have an active support community ready to answer your questions concerning deployment? Is commercial support available?

If so, please give brief details.

	

	

	4. Version Issues

	When was the last stable version of the software released? How many versions of the software have been released?

Please give brief details.

	

	

	5. Documentation

	Is documentation of the software available? How usable is the documentation? What areas are covered by the documentation?

Please give brief details.

	

	

	6. Skills

	Do you have the technical expertise needed to develop, implement or use the software?

Please give brief details.

	

	

	7. Licence Conditions

	What are the licence conditions governing use of the software? Do they provide any barriers for use of the software?

Please give brief details.

	

	

	8. Costs`

	What are the licence and maintenance costs for use of the software? Are there any additional costs?

Please give brief details.

	

	

	9. Training And Staff Development Issues

	Have you developed a training strategy for staff involved in developing, maintaining, installing or using the software.

Please give brief details.

	

	

	10. Resourcing Issues

	Have you the resources needed to implement the above?

Please give brief details.

	

Use Of This Toolkit

It is envisaged that this toolkit will be used to support the planning processes at the early stages of the development of a digital library service.

The issues covered in the toolkit are intended to help in the technical and managerial discussions which projects will be involved in.

6
Further Information

We hope that the QA For Software Handbook provides useful advice to projects and services which are engaged in digital library development work.
In addition to this handbook there are other sources of information funded by the JISC which provide useful advice.

OSS Watch
OSS Watch is a JISC-funded advisory service which provides neutral and authoritative guidance about free and open source software, and about related open standards to the further and higher education communities.

Further information on OSS Watch is available on the Web site which is available at <http://www.oss-watch.ac.uk/>. The OSS Watch Web site is illustrated.

[image: image1.png]Fie Edt View Favortes Tools Help ax

Q- © X B G| s deroens @ee @ - 2B EH B

addhess | €] htpsffuwm.oss-watch.ac.ukf v | Links >

SS Watch

Open Source Advisory Service

Search] 0SS Watch provides the UK further and higher education community
with neutral and authoritative guidance abot free and open source
software, and about related open standards. Specifically, it offers

JI S(+ Aweb-based clearing-house for up to date information;

+ conferences and workshops;
+ focussed assistance for institutions and software projects

About 0SS Watch considering open source;

Participate « investigative reports

Events

Studies 0SS Watch News

Presentations

Resources Munich Open Source Move to Proceed [Fri 13 Aug 2004 08:59]

Munich is still committed to its switch to open source despite recent
concerns over the European software patent issue

Open source in your T strateqy [Thu 12 Aug 2004 12:18]
WWhatis the role of open source ininstitutional IT strategies?

Open Source 2007 How Did This Happen? [Tue 20 Jul 2004 13:05]
Brad Wheeler imagines two possible outcomes from porting the open
source model to application software in higher education @

& © Internet

The OSS Watch Web Site
Acknowledgements

We are grateful to the following for contributing to the work of the QA Focus project:

Members of the JISC including Caroline Ingram our initial point of contact in JISC and Rachel Bruce and Balviar Notay, who provided valuable advice and support to the QA Focus team following Caroline’s departure from JISC.

The contributors to the briefing papers and case studies included in the handbook: Randy Metcalfe (OSS Watch), Pete Cliff and Eddie Young (UKOLN).

Colleagues at UKOLN and the AHDS who provided valuable input to the work of the QA Focus project.

Karla Youngs and Ed Bremner, TASI, for their contributions to the work of QA Focus in its early days.

Others involved in the JISC and related work who, knowingly or unknowingly, contributed to our work.

�

�

PAGE

