Preservation and storage management for Institutional Repositories

RSP Summer School 2008, Session 3

Maureen Pennock

Steve Hitchcock

HERPOSITORIES SUPPORT PROJECT

Digital Preservation

Aims of this session:

Show why preservation matters

- Encourage you to engage with preservation planning
- Introduce you to some tools and services that may help

Digital Preservation: Background

What is Digital Preservation?

" the series of actions and interventions required to ensure continued and reliable access to authentic digital objects for as long as they are deemed to be of value."

JISC Briefing paper on Digital Preservation, 2006

Digital Preservation: Background

Why is it an issue?

- Fragility' of digital objects
- Evolution of technologies
- Underestimated challenge
- Organisational & cultural issues
- Supporting, rather than core, activity

Digital Preservation: Background

What are the risks?

- Loss of:
 - Content
 - Structure
 - Access
 - Investment
 - Ideas
 - Confidence

Over to Steve ...

Digital preservation for cab drivers

http://www.flickr.com/photos/sweatyphotos/400920980/

Data proliferation

More data – more storage

- Large
- Expandable
- Flexible
- Manageable
- Interoperable
- Open storage

Preservation @ RSP

Policy, Planning

Summer School 2007

http://www.rsp.ac.uk/events/SummerSchool2007/programme

Metadata

Professional briefings 2008 (BL, Bournemouth) http ://www.rsp.ac.uk/events/ProfBrief.php

Formats, Services

Briefing paper (2pp)

http://www.rsp.ac.uk/pubs/briefing-papers.php

Today: Storage management

Storage management in the wider preservation picture

'Passive' preservation, storage-based

- bit-level storage, e.g. external storage, managed storage, backup
- 'Active' preservation, format-based
- Characterisation, e.g. which formats
- Planning, assesses implications of particular formats
- Action, e.g. transform, migrate at-risk objects
- Active approaches are dynamic and continuous, probably requiring expert services, and involving dialogue with the content provider (repository) to assess and select the parameters to inform planning and trigger actions.

Storage management group exercise

Each group will consider a different data type:

Personal libraries

Digital photographs
Music (MP3s)

Storage management group exercise

Each group will consider a different data type:

Personal libraries

- Digital photographs
- Music (MP3s)

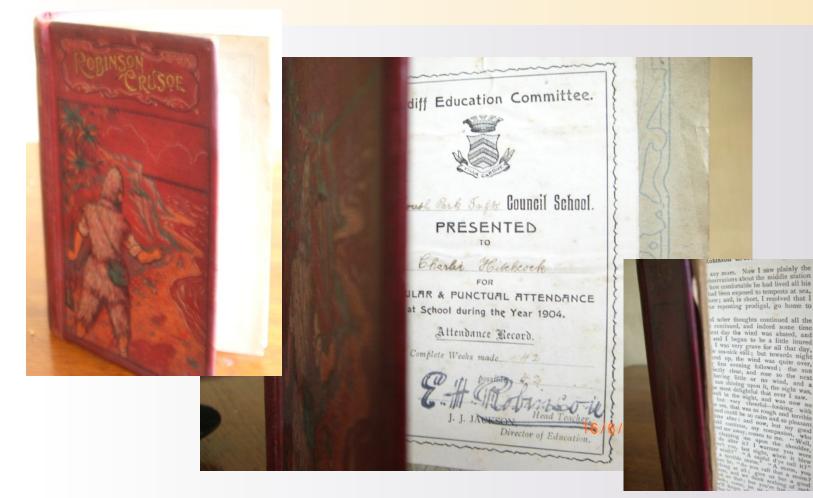
Digital libraries

- Digitised content
- Web sites
- Institutional repositories

Over to you...

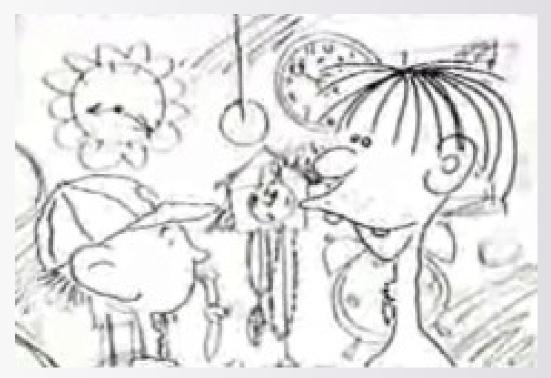
Practical exercise to explore the issues

- Five groups
- Content types:
 - Digital photos
 - Digital music
 - Digitised content
 - Web sites
 - Repositories


Follow worksheet and discuss!


After the exercise ...

feedback and discussion...



What time is it Eccles?

http://www.youtube.com/watch?v=VSSGiA4f5cs See also http://whattimeisiteccles.com/

<i>Eccles</i> : I know that my good fellow. That's right, um, when I asked the fella to write it
down, it was eight o'clock. <i>Bluebottle</i> : Well then. Supposing when
somebody asks you the time, it isn't eight o'clock?
<i>Eccles</i> : Well den, I don't show it to 'em.
<i>Bluebottle</i> : Well how do you know when it's eight o'clock?
<i>Eccles</i> : I've got it written down on a piece of paper.
Transcript from <i>The Goons, The Mysterious</i> <i>Punch-Up-The-Conker</i> , first broadcast 7th February 1957

This is the conundrum:

- That we are used to preserving and presenting things that have some fixed, physical representation
- Some data varies over time and requires some media to reproduce it (e.g. multimedia)

And some data simply becomes obsolete over time

- We should beware trying to fit a physical representation to something when it isn't appropriate
- We should be careful, especially with the Web, that we don't become Eccles, trying to write down the time.

Challenging digital preservation

"Unless the vexatious problem of digital preservation is solved, all texts "born digital" belong to an endangered species. The obsession with developing new media has inhibited efforts to preserve the old. We have lost 80 percent of all silent films and 50 percent of all films made before World War II. Nothing preserves texts better than ink imbedded in paper, especially paper manufactured before the nineteenth century, except texts written on parchment or engraved in stone. The best preservation system ever invented was the old-fashioned, pre-modern book."

Robert Darnton, The Library in the New Age, *New York Review of Books*, Vol 55, No 10, June 12, 2008 http://www.nybooks.com/articles/21514

Darnton is Director of the University Library, Harvard University

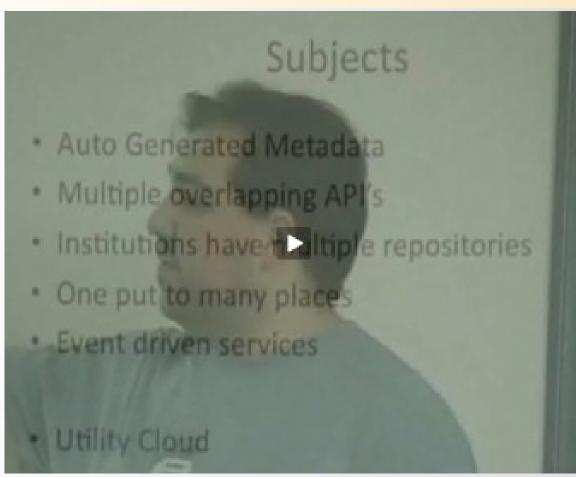
Challenging digital preservation: a response

How to read Darnton

- Books and print are a great preservation system.
- Not everything is in this form.
- There were no pre-digital halcyon days of preservation, apart from print.
- New media, new tools, new applications continue to emerge and are adopted.
- We can't stop the world and expect everyone to get off. In this sense preservation efforts will always be reactive.
- We will never 'solve' the vexatious problem of digital preservation. But we can attempt to manage it effectively with appropriate skills, services and resources.

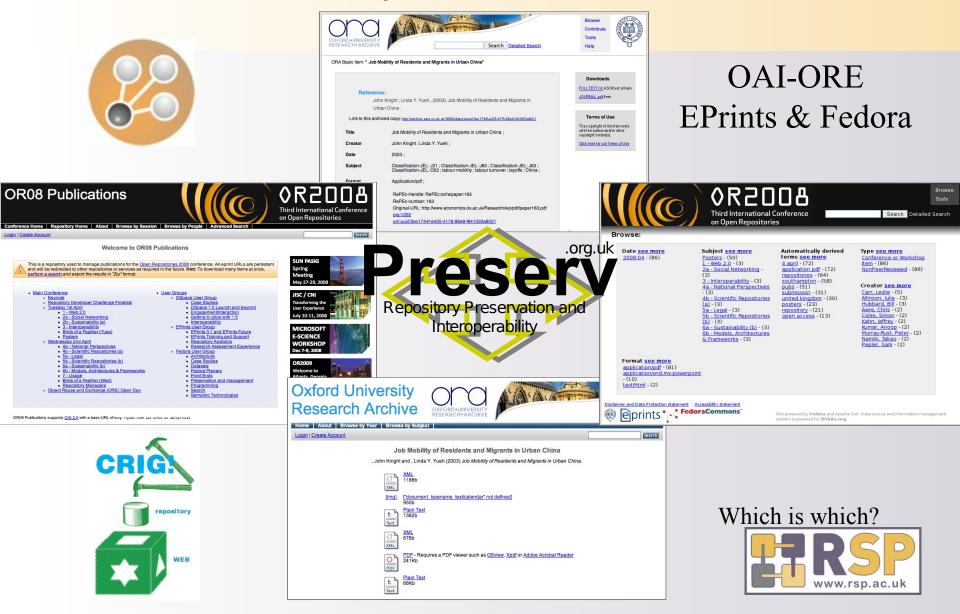
- The key to all we do is openness:
- Open standards
- Open source
- Open Archives
- Open access
- Open storage
- Open repositories

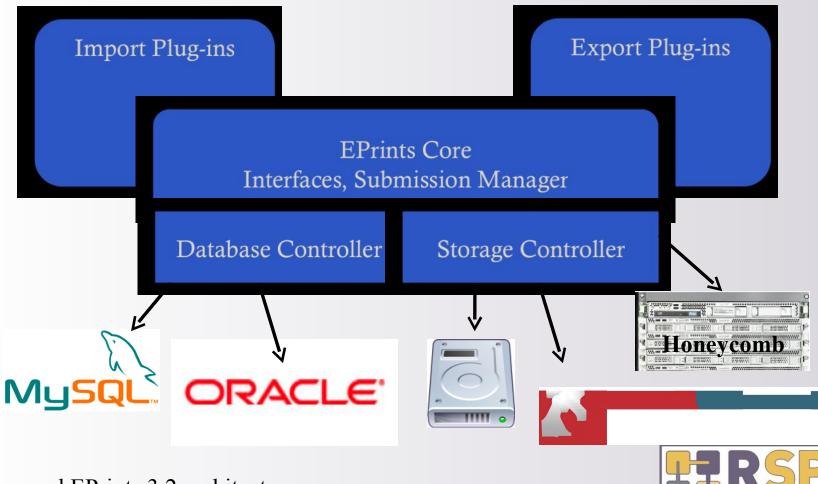
Don't lock into specific technologies



Repository preservation

- What help is available?
- Storage
- Openness
- Interoperability
- Tools
- Services
- Service providers


Ultimate interoperability: putting EPrints into Fedora, and back again


by Dave Tarrant, Ben O'Steen and Tim Brody, Preserv 2 From Blip TV http://blip.tv/file/866653

Interoperability in Action

Repository architecture: storage controller

Proposed EPrints 3.2 architecture

Combining active and passive storage: tools and service providers

- Accurately identify the formats of objects stored in the repository
- Adopt a trusted and current list of storage formats and their prospects for preservation
- Develop a plan of action based on the findings of 1 and 2

For 1 and 2 you can find tools and services on the Web:

Format identification tools, e.g. DROID

http://droid.sourceforge.net/wiki/index.php/Introduction

Repository registry services, e.g. ROAR has format profiles in development for over 200 repositories

http://roar.eprints.org/index.php?action=profile&url=http://dspace.anu.edu.au/

Format reference sources, e.g. Library of Congress

http://www.digitalpreservation.gov/formats/

Prospective preservation service providers

Today's perspective

- Preservation services, National libraries, e.g. KB-DARE (Netherlands), German National Library (theses), BL (PubMed Central UK), Sherpa-DP
- Institutional services, e.g. Oxford
- Repository software
- Repository services
- Library services, e.g. OCLC
- Cloud storage services, e.g. Amazon, Google

Plato: Preservation Planning Tool

- "Until now, preservation planning is largely a manual and tedious process where available solutions are evaluated against the specific requirements of a particular situation."
- Implements a well-documented and validated preservation planning methodology
- Integrates registries and services for preservation action and characterisation
- Provides a Web-based interface to guide the planner through the process.

Plato: Analyze Results

Froject	PLANETS Define Requirer		vation Plannin Evaluate Requirements	ng Tool (<i>Plato</i>)		eservation of Console	e Video Games Test Import	[logout mark] [h
Analyse R		inenta in	Lvaluate Requirements	Consider Results	in Digital Pro		e video Games rescamport	
Aggregat meth	tion Arithmeti	c Mean	v					
S	Select				Alternat	ive		
		ZSNES 1	.51					
V		SNES9X	1.51					
		MESS 0.1	119					
V		VLC 0.8.6	6c					
en an	College All							
-	Collapse All Requirements		Name				Result	
Objective R Focus		irements	Name		SNE	IES 1.51: 2.83 S9X 1.51: 2.87 S 0.119: 2.83 0.8.6c: 4.59	Result	
Objective R Focus	Requirements Objective Requ				SNE	S9X 1.51: 2.87 S 0.119: 2.83	Result	
Objective R Focus	Cobjective Requirements Objective Requirement Cobjective Requirement Recommend	lation: SN	IES9X 1.51 💌	results, VLC is discarde	SNE MES VLC	S9X 1.51: 2.87 S 0.119: 2.83 0.8.6c: 4.59	Result	
Objective R	Cobjective Requirements Objective Requirement Cobjective Requirement Recommend	lation: SN	IES9X 1.51 💌	results, VLC is discarde	SNE MES VLC	S9X 1.51: 2.87 S 0.119: 2.83 0.8.6c: 4.59	Result	
Objective R Focus	e nd a t i o n Recommend Recommend	lation: SN	IES9X 1.51 💌	results, VLC is discarde	SNE MES VLC	S9X 1.51: 2.87 S 0.119: 2.83 0.8.6c: 4.59	Result	

From Plato walkthrough slideshow

http://www.ifs.tuwien.ac.at/dp/plato/pres_plato-workshop.ppt

OpenDOAR policy tool

Policies are an important element supporting sustainability

- OpenDOAR policy tool allows repository managers to easily implement publicly accessible and machine readable policies on:
 - Metadata Data
 - Content & Submission
 - Preservation
- www.opendoar.org

JHOVE

- JSTOR/Harvard Object Validation Environment
- Extensible software framework for performing digital object:
 - Format identification
 - Format validation
 - Format characterisation
- Outputs in XML; can be used as desired (eg in conjunction with further technology watch)
- hul.harvard.edu/jhove

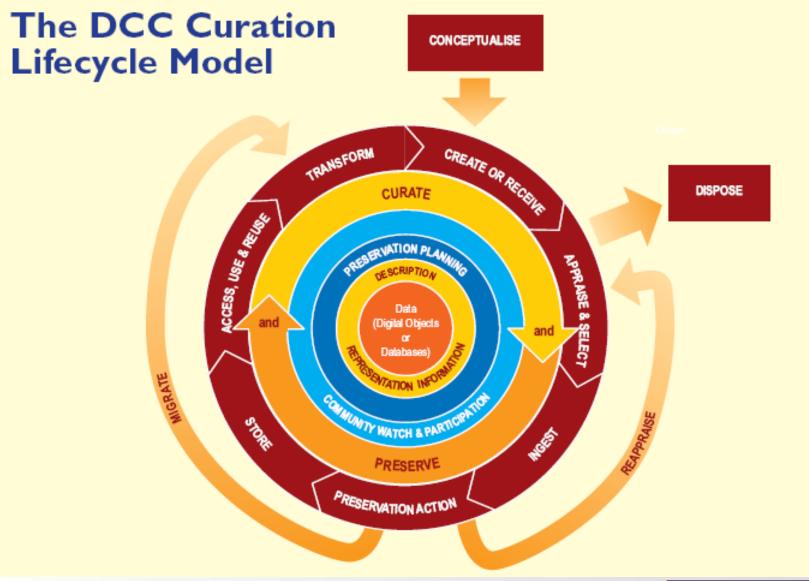
DRAMBORA interactive

Auditing your repository is a highly effective means to ensure your activities will satisfy your goals, particularly when they include preservation.

- **DRAMBORA** methodology:
 - Provides internal auditors with completed risk register
 - Helps prepare for external audit (and certification?)
 - Facilitates retrospective reflection & proactive planning
- www.repositoryaudit.eu

(Don't) PANIC!

PANIC PREMINT: Preservation Metadata Input Tool


- Designed to collect information regarding a digital object so that it can be archived and preserved.
- Takes into account the current state of the digital object, intention behind the creation of the object & attitude of the creator regarding preservation of the digital object.
- See www.itee.uq.edu.au

NLNZ Metadata Extractor Tool

- Programmatically extracts preservation metadata from a range of file formats like PDF documents, image files, sound files Microsoft office documents, and many others.
- Outputs metadata in a standard format (XML) for use in preservation activities.
- Can also be used in other activities, including resource discovery
- Available from Sourceforge

This is where your hardware will end up

Make sure your data doesn't!

Research outputs go in research repositories epints

www.rsp.ac.uk **HEREPOSITORIES BUPPORT PROJECT**

Maureen Pennock Steve Hitchcock