
Simple Web service Offering
Repository Deposit (SWORD)

Project kick-off meeting
Birkbeck College, London, 30th April 2007

Julie Allinson, UKOLN, University of Bath
www.ukoln.ac.uk/repositories/digirep/index/SWORD
<j.allinson@ukoln.ac.uk>

www.bath.ac.uk

a centre of expertise in digital information management
www.ukoln.ac.uk

UKOLN is supported by:

http://www.ukoln.ac.uk/repositories/digirep/index/SWORD

2

Project plan : aims

• To improve the efficiency and quality of
the repository ‘Ingest’ function

• To diversify and expedite the options for
timely population of repositories with
content

• To facilitate the creation and use of
common deposit interfaces

• To improve repository interoperability as
outlined in the Information Environment

• To take a service-oriented approach to
development as outlined by the E-
Framework

3

Project plan : objectives

• To produce a standard mechanism for depositing content
in repositories

• To test and refine the lightweight protocol originally
formulated by a small group working within the Digital
Repositories Programme (the Deposit API)

• To evaluate existing standards that might be used to offer
a deposit web service

• To implement the deposit service in EPrints, DSpace,
Fedora and IntraLibrary

• To develop a prototype ‘smart deposit’ tool
• To disseminate the resulting work and encourage

community uptake
• To ensure that the approach developed by this project is

cognisant of UK requirements (as defined by the JISC
Common Repository Interfaces Group – CRIG) and
International work in this area (including the OAI-ORE
activity)

4

Workpackages

• 1: Documentation of the deposit API
– March to July

• 2: Technical development
– April to August

• 3: User testing and feedback
– June to August

• 4: Community acceptance and dissemination
– March to August

• 5: Project management
– March to August

5

Deposit API

• Deposit API activity was brought together
• to find lightweight solution to assist populating

repositories within timescales of JISC
programmes

• It comprised a group of repository software
developers from Eprints.org, DSpace, Fedora,
Intrallect and others

• facilitated by the JISC Repositories Research
Team

• to address the need for a common Deposit
standard

• Two meetings: March 2006, July 2006
– Discussion of scenarios/use cases; Requirements;

Draft XML serialisations

6

User requirements / scenarios

• Author deposits using a desktop authoring system to a
mediated multiple deposit service

• A user submits an IMS-compliant learning object to a
National Repository using a client application

• Deposit into multiple repositories
• Transfer between intermediate hosts
• Repositories share improved metadata
• Experimental data output from spectrometer is 'saved as'

a file and a file containing metadata on operational
parameters is also generated. A data capture service is
invoked and the files pertaining to the experiment are
deposited, along with the necessary metadata, in the
laboratory repository.

 From at http://www.ukoln.ac.uk/repositories/digirep/

7

Pain points

• no standardised way of transferring existing
collections of digital objects and/or metadata
from a filesystem or legacy database into a
repository

• no standard interface for tagging, packaging or
authoring tools to upload catalogued objects into
a repository

• no standard interface for transferring digital
objects between repositories

• no way of initiating a contribution workflow from
outside a repository system

• no way of including deposit into a repository a
part of service orientated architecture

8

Scope

• In
– Deposit
– Permissions and conditions for deposit

• Out
– Update and delete
– Mappings between metadata/packaging formats
– Identifier solutions
– Relationships between digital objects
– Tracking and provenance
– Authentication
– …

9

Some functional requirements

A Deposit service should:
• be generic enough to support wide range of heterogeneous repositories

– scholarly publications, data, learning objects, images, etc.
• accept submission of different digital object types in consistent way:

– data and/or metadata in the form of complex objects or content packages
• support different workflows for deposit, e.g.

– user to multiple repositories via intermediate client
– user to repository, repository to additional repositories
– user-triggered and machine-triggered deposit

• accept large-scale (scientific datasets)
• support statuses, e.g. deposit to different states of a workflow
• support collections and changes in policy and permissions
• support differences in repository policy
• support non-instantaneous processes, e.g. deposit pending mediation
• support validation report and integrity checks
• support anonymous deposit
• support more complex, authenticated deposit
• support acceptance and handling of incomplete records
• support rejection of records (reasons for rejection are out of scope)
• support human-selected targets for deposit
• support different deposit requests

10

Some issues

• Boundaries between deposit and ingest
– what has already happened at point of deposit? regarding metadata

and identifiers
– how far does the deposit service need to validate what is being

deposited
– and can it reject deposit requests?

• Data integrity
– is there requirement to get back (export) exact object that was

deposited?
• Multiple data types, metadata formats and content

packages
– how far should the deposit service check its ability to accept what is

being deposited?
– Can look up of policy rules be done as a request to service

registry?
– how far is look up of policy rules automated?

• Authorisation and authentication
– how will the deposit service check the authority of the

person/machine doing the ‘putting’
– how will it interface with auth services?

11

Existing standards

• WebDAV (http://www.webdav.org/)
• JSR 170 (http://www.jcp.org/en/jsr/detail?id=170)
• JSR 283 (http://www.jcp.org/en/jsr/detail?id=283)
• SRW Update (http://www.loc.gov/standards/sru/)
• Flickr Deposit API (

http://www.flickr.com/services/api/)
• Fedora Deposit API (

http://www.fedora.info/definitions/1/0/api/)
• OKI OSID (http://www.okiproject.org/)
• ECL (http://ecl.iat.sfu.ca/)
• ATOM Publishing Protocol (

http://www.ietf.org/html-charters/atompub-charter.html
)

http://www.webdav.org/
http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283
http://www.loc.gov/standards/sru/
http://www.flickr.com/services/api/
http://www.fedora.info/definitions/1/0/api/
http://www.okiproject.org/
http://ecl.iat.sfu.ca/
http://www.ietf.org/html-charters/atompub-charter.html

12

Deposit – abstract service definition

• A Deposit interface: Provides an interface
through which content and metadata can be
deposited and initiates ingest process for local
storage.

Summarised from Andy Powell, A 'service oriented' view of the JISC
Information Environment:

http://www.ukoln.ac.uk/distributed-systems/jisc-ie/arch/soa/jisc-ie-soa.pdf

• Put: A put service supports the request for
ingest of one or more surrogates into a
repository, thereby allowing the addition of
digital objects to the repositories’ collection

From An interoperable fabric for scholarly value chains:
http://www.dlib.org/dlib/october06/vandesompel/10vandesompel.html

http://www.ukoln.ac.uk/distributed-systems/jisc-ie/arch/soa/jisc-ie-soa.pdf

13

Deposit – two components

• Deposit: service offered by a repository, allowing remote
users (machines or people) to upload data
– data in:

• deposit request with optional parameters
(e.g.digital object ‘semantics’, metadata formats..)

– data out:
• status (success, failure, pending), receipt

confirmation and digital object identifier
• Explain: service offered by a repository, allowing remote

users (machines or people) to inspect the repository for
policy and/or other data
– data in:

• introspection request (“explain”)
– data out:

• introspection response (“repository policy info”)

14

Draft XML serialisations

http://www.ukoln.ac.uk/repositories/digirep

15

Deposit service specification

• the service will work by the client issuing XML
commands over HTTP to the repository Deposit
service

• the service responds with formatted XML
messages

• other approaches may also be considered, e.g.
SOAP

• a layered approach, with the specification of
two levels of compliance at the moment.
– Level 0 compliance requires a set of mandatory

elements
– Level 1 offers a set of additional optional elements

that may or may not be used

16

The work …

• define the service
– Implementation-neutral information models

• examine existing protocols and specifications
– could they be used implement the defined abstract service?

• evaluate and decide whether a new protocol or API is
required, or finalise the original deposit API work

• test it against different repository software
• Eprints
• DSpace
• Fedora
• Intrallect intraLibrary

• build a client implementation
• iteratively revise and re-test
• disseminate and embed into the repositories community

