Tap Into Bath

System Maintenance Guide

Change History

	Name
	Date
	Description
	Checked By

	Ian Bolton
	07/07/04
	Completed first version
	

	Ian Bolton
	16/10/04
	Updated after new features were added
	

	
	
	
	

	
	
	
	

Contents

21 - Introduction

22 - System Installation Procedure

22.1 - Server Requirements

22.2 - Install or Transfer Instructions

43 - Maintenance

43.1 - Directory Structure

53.2 - XHTML Templates

63.3 - Configuration

63.4 - Drop Down List Boxes

63.5 - Overview of Admin Scripts

83.6 - Overview of Public Scripts

83.7 - Database Search Result Purge

83.8 - Database Backups

1 - Introduction

The purpose of this document is to describe the implementation details for key aspects of system functionality. It is aimed towards administrators who wish to install or modify the Tap into Bath system, or who simply wish to discover how the system operates at a lower level than that described in the ‘High Level Design’.

For background information relating to the Tap into Bath project itself, please refer to the ‘Requirements and Plan’ document.

2 - System Installation Procedure

This section of the document describes how to install (or transfer) the Tap into Bath system onto an appropriate server, using the distribution CD.

2.1 - Server Requirements

· Should have version 5.6.1 or greater of Perl installed, with the interpreter (or symbolic link) located at /bin/perl.

· The Perl CGI library version 2.752 or greater must be installed.

· A clean workspace with at least 2Mb of free user space.

· The $HOME environment variable set to the root of the workspace.

· Must be running a HTTP server that allows CGI script execution from the ./public_html/cgi-bin at the root of the workspace.

· Needs to be running a latest version of the MySQL RDBMS server.

· The space reserved for the database should be around 100Mb for potentially large collection descriptions.

· Crontab (or some other scheduling software) should be installed.

· Has access to a CD reading device.

2.2 - Install or Transfer Instructions

1. Mount the CDROM and copy the whole disk to the root of the clean workspace: (The following commands may be system dependant)

bash$ pwd

[Root of workspace displayed]

bash$ mount /mnt/cdrom

bash$ cp /mnt/cdrom/.my.cnf ./

bash$ cp –r /mnt/cdrom/* ./

bash$ ls -al

CVS database public_html .my.cnf

2. Create a blank MySQL database with an appropriate database name. Grant all working privileges for the new database to an appropriate user name.

3. If the system is being transferred, then update the blank database from the saved .sql file that contains the data + tables with the following command: (Replacing the <username>, <dbname>, and .sql file with appropriate values)

bash$ mysql –u <username> -p <dbname> < db-backup-all-01-07-04.sql

4. Otherwise if the system is a clean install, then update the blank database from the most recently dated .sql file (contained in the ./database/ directory) that contains just the table definitions, using the following command: (Replacing the <username>, <dbname>, and latest .sql file with appropriate values)

bash$ mysql –u <username> -p <dbname> < ./database/db-backup-tables-01-07-04.sql

5. Change the working directory to ./public_html/cgi-bin/admin . Then edit the ‘.htaccess’ file from this directory. Set the AuthUserFile variable to the correct path as appropriate to the current workspace.

6. The ‘.htpasswd’ file in this same directory is by default set-up with one user called administrator, with a password of tap30ba. To remove this user delete the .htpasswd file. Add new user(s) with the following system commands:

bash$ htpasswd –c .htpasswd user1

[Use to add first user if password file was deleted]

[you are now prompted for the password for user1]

bash$ htpasswd .htpasswd user2

[you are now prompted for the password for user2]

7. Repeat step (5) and (6) to set users and passwords for the data entry interface at ./public_html/cgi-bin/entry. The default user is dataentry1 with password TiB3Entry[.

8. Now install the crontab (or use other scheduling software) for the script that will purge the database search results. Ensure that it is set-up to run regularly (i.e. every 10 minutes) with an entry such as:

bash$ crontab –e

[Editor is loaded as specified by $EDITOR environment variable]

0,10,20,30,40,50 * * * * /u/ex/x/exxicb/database/purge/purgesearchresults.pl

9. Edit the configuration file located at ./public_html/cgi-bin/common/cfg/config.pl (relative to workspace root) and set the user preferences for the system. Important attributes to consider are home-dir and database-name, which should be set to the root directory of the workspace and the name of the database respectively.

10. Edit the ‘.my.cnf’ file from the root of the workspace, and set the username and password of the database user to the correct values. The system is now activated.

3 - Maintenance

This section describes how the system is put together and how it can be maintained by a system administrator.

3.1 - Directory Structure

Note: Directories named CVS are purely for version control purposes, and are not part of the Tap into Bath system. Therefore they are not mentioned in this section.

./ -> The root directory of the workspace

.my.cnf -> The MySQL configuration file containing the database username and password.

./database/ -> Contains files related directly to the database

db-backup-all-<dd>-<mm>-<yy>.sql -> A file containing a backup of the
whole database (tables + data) made on date <dd>/<mm>/<yy>.

db-backup-tables-<dd>-<mm>-<yy>.sql -> A file containing a backup of just the database tables made on date <dd>/<mm>/<yy>. The latest table only backup will implement the data model as described in the ‘High Level Design’ document.

./database/purge/ -> Stores the database search result purging files.

purgesearchresults.pl -> The script that will purge the search results from the database if they are older than the number of minutes defined in the configuation file.

purgelog.txt -> A temporary log file that is created by the purger.

./public_html/ -> The root directory of the web space.

./public_html/cgi-bin/ -> Contains all the Perl/CGI scripts for the site.

./public_html/cgi-bin/admin/ -> The administrator interface scripts.

./public_html/cgi-bin/entry/ -> The data entry interface scripts.

.htaccess -> Defines this directory as a HTTP protected area.

.htpasswd -> The user and password file for this protected area.

(See section 3.5 for description of scripts)
./public_html/cgi-bin/public/ -> The public search interface scripts.

(See section 3.6 for description of scripts)

./public_html/cgi-bin/common/ -> Common to both admin and public interfaces.

./public_html/cgi-bin/common/cfg/ -> Stores system configuration.

config.pl -> The central configuration file. See section 3.3.

./public_html/cgi-bin/common/lists/ -> Contains files for drop down lists

languages.txt -> The Language drop down list details.

namecorporate.txt -> The Corporate Name drop down list.

namepersonal.txt -> The Personal Name drop down list.

places.txt -> The names of places shown in the Place drop down list.

times.txt -> The date/time strings that appear in the Time drop down

typecontent.txt -> The TypeContent drop down list details.

typecuratorialenv.txt -> The TypeCuratorialEnvironment drop down list.

typepolicy.txt -> The TypePolicy drop down list details.

typetype.txt -> The TypeType drop down list details.

./public_html/cgi-bin/common/require/ -> Perl function libraries.

template.pl -> Handles the XHTML template parsing functionality.

utility.pl -> General utility functions used in both interfaces.

./public_html/images/ -> Contains all the images.

. -> All the image files (.gif, .jpeg) in use throughout the site.

./public_html/stylesheets/ -> Directory containing all the stylesheets.

./public_html/stylesheets/admin/ -> Directory containing admin stylesheets

tapintobath.css -> The main administrator interface stylesheet.

./public_html/stylesheets/public/ -> Directory containing public stylesheets

tapintobath.css -> The main public interface stylesheet.

./public_html/templates/ -> Contains all the XHTML templates.

./public_html/templates/admin/ -> Administrator interface templates.

*.template -> A XHTML template file. See section 3.2 for details.

./public_html/templates/entry/ -> Data entry interface templates.

*.template -> A XHTML template file. See section 3.2 for details.

./public_html/templates/public/ -> Public interface templates.

*.template -> A XHTML template file. See section 3.2 for details.

3.2 - XHTML Templates

Each ‘.template’ file in the ./public_html/templates/ directory is a XHTML file with template parameters. The template parameters are the dynamic parts of the web page, and are usually written in capital letters with surrounding double angled brackets (e.g. <<DB-TITLE>>). The Perl/CGI scripts read in these template files and replace each occurrence of a template parameter with the dynamical generated data.

Most scripts parse multiple templates in order to generate a complete XHTML web page. For example, all scripts parse at a minimum a standard header and footer template (called mainheader-xhtml.template, and mainfooter-xhtml.template respectively). The dynamic parts of the header are parameters such as the top navigation bar. Other parts of the header, such as the title, will stay constant. Making a change to one of these files will update the header/footer for every display page across the entire interface.

It is also possible for template files to have template parameters, which themselves are other template files. This is the case for dynamically generated XHTML tables where there could be any number of rows in the table (e.g. a row for each search result). There would be two template files in this case; one for the table as a whole, and the other for one particular table row. The table row template would be parsed as many times as is necessary, then the table template as a whole will be parsed.

3.3 - Configuration

There is just one shared configuration file called ‘config.pl’ in the ./public_html/cgi-bin/common/cfg/ directory. All text appearing after a ‘#’ symbol is a comment, which is not read by the program. Comments are used to help explain the purpose of each of the configurable elements within the file.

When making changes to the configuration, the text on the right hand side of each equals (=) symbol is the part that should be changed. This text should be quoted by either single or double quotes, depending on if the text contains special characters or is just plain text. Every configuration element should end with a semi-colon ‘;’.

If an error is made in this file then the system will cease to function correctly until it is corrected, so it is advisable to maintain a backup, and to check the results of a configuration change immediately.

The types of things that are contained within the configuration file are resource locations, database name, help text (alt tag element), error help text, timings (e.g. how long to keep search results in DB), default number of search results per page, etc.

3.4 - Drop Down List Boxes

The drop down list boxes can be updated from the files contained within the ./public_html/cgi-bin/common/lists/ directory. The files do not all have the same format, so read the comment header for format information and warnings.

Just changing the files will not update the drop down lists immediately, because the database maintains the lists. Therefore after a change has been made, the administrator should call the ‘Reset Database Drop Down Lists’ option from the main menu. No errors should be flagged during the reset procedure or the database will be left in an invalid state. If an error does occur then it will be reported via the interface.

3.5 - Overview of Admin Scripts

	Name of Script
	Overview

	addeditdelcatalogue.cgi
	Allows the administrator to add/update/delete a catalogue associated with a particular collection.

	addeditdelobject.cgi
	Allows the administrator to add/update/delete an object associated with a particular collection.

	addeditdelstrength.cgi
	Allows the administrator to add/update/delete a strength associated with a particular collection.

	addupdatebasic.cgi
	Allows the administrator to add a new collection record (mandatory information) or to update this mandatory information for an existing collection.

	addupdateperson.cgi
	Allows the administrator to add or update a person (admin, owner, collector) associated with a particular collection.

	adminperformsearch.cgi
	Performs an advanced admin search on the collection database using the given search criteria from the adminsearch.cgi form. Stores any search results found in the database for later retrieval.

Results are retrieved by calling this script with the action set to ‘retrieve’ rather than ‘search’, and supplying a page number of the results to display.

Each search result has an update link to the recordmanager.cgi script and a delete link to the deletecollection.cgi script.

	adminsearch.cgi
	Displays the admin advanced search form. Submits search criteria to performadminsearch.cgi.

	browse.cgi
	Part of the admin search interface that allows the administrator to alternatively search by the first letter of the collection title. The overview description of adminperformsearch.cgi also applies to this script.

	deletecollection.cgi
	Allows the administrator to delete an entire collection. The script handles all dependencies, including sub/super collection assignments by other collections.

	main.cgi
	Display the main menu of the admin interface.

	recordmanager.cgi
	Displays the central full record viewer. Contains various links that allow the administrator to add/update/delete all of the sub elements that can form part of a collection.

	resetdblists.cgi
	Read the external drop down list files and update the database. See section 3.4.

	searchorbrowse.cgi
	Displays a simple screen to allow the administrator to choose to browse by title or to perform a complex search. Links to adminsearch.cgi and browse.cgi.

	setlanguages.cgi
	Displays a list box that enables the administrator to select any number of languages to associate with a collection.

	setnames.cgi
	Displays a list box that enables the administrator to select any number of names to associate with a collection.

	setplaces.cgi
	Displays a list box that enables the administrator to select any number of places to associate with a collection.

	settimes.cgi
	Displays a list box that enables the administrator to select any number of times to associate with a collection.

	settypes.cgi
	Displays four list boxes that enable the administrator to select the type of a particular collection.

	updateadvanced.cgi
	This script allows the administrator to update the additional information about a collection. Only update is required because the elements are created (and set blank) when a collection record is first constructed.

	updatelocation.cgi
	This script allows the administrator to update the location associated with a collection. The script will transparently perform an add action if a location record does not currently exist for the collection (e.g. a recently created record).

3.6 - Overview of Public Scripts

	Name of Script
	Overview

	advancedsearch.cgi
	Displays the advanced search form. Submits search criteria to the performsearch.cgi script.

	performsearch.cgi
	Performs either a basic or advanced search depending on the CGI parameters that have been given. Stores any search results found in the database for later retrieval.

Results are retrieved by calling this script with the action set to ‘retrieve’ rather than ‘search’, and supplying a page number of the results to display.

Each search result has a link to the showbriefdetails.cgi and showdetails.cgi script.

	search.cgi
	Displays the basic search form. Submits search criteria to the performsearch.cgi script.

	showbriefdetails.cgi
	Displays the brief record details for a particular collection.

	showdetails.cgi
	Displays the full record details for a particular collection.

3.7 - Database Search Result Purge

The database search result purge facility is included to prevent the temporary search results (generated from public and admin searches) from eventually overflowing the database. It is designed to be called on a regular basis (best automated in the crontab or similar scheduling software). There are various configuration parameters relating to the operation of the purge script in the central configuration file.

3.8 - Database Backups

Database backups are stored in the ./database/ directory. It is possible to generate/restore full database, table only, or data only backups with the following commands.

To dump the entire contents of the database to a file:

bash$ mysqldump –u <username> -p <dbname> > filename.sql

To dump just the table definitions to a file:

bash$ mysqldump –d –u <username> -p <dbname> > filename.sql

To dump just the data (no “create table” definitions):

bash$ mysqldump –t –u <username> -p <dbname> > filename.sql

To restore a full or table backup file: (usually need to blank the database first)

bash$ mysql –u <username> -p <dbname> < filename.sql

PAGE
2

