

Towards a Curation and Preservation Architecture for CAD Engineering Models

Alex Ball, Lian Ding, Manjula Patel

University of Bath

イロト 不得 トイヨト イヨト

Outline

Introduction

Industrial Context

Computer-aided design (CAD)

Management environments

LIMMA

RRoRIFE

Significant Properties

2D Geometry

3D Geometry

Geometric construction techniques

Geometry-related metadata

Compression and identification

Further work

Conclusions

A E > A E >

The Product-Service Paradigm

iPRES 2008 29 September 2008

Computer-aided design (CAD)

- Increased integration with downstream tools
 - Manufacturing (CAM)
 - Analysis and simulation (CAE)
 - Enterprise Resource Planning (ERP)
 - Customer Relation Management (CRM)
 - Supply Chain Management (SCM)
- Increasingly complex representations
- Mostly proprietary, mutually incompatible, ephemeral formats

1 E 1 1 E 1

iPRES 2008 29 September 2008

Inside a CAD model

CAD models typically contain:

- geometry
- dimensions and tolerances
- construction history
- 'features' predefined parts
 - more meaningful than 'raw' geometry

・ コ ト ・ 雪 ト ・ 雪 ト ・ ヨ ト

Lightweight formats

Lightweight visualization formats are:

- simpler formats dedicated to a single purpose e.g. design review)
 - approximate or exact geometry
 - sometimes product manufacturing information
- usually well documented to encourage wide support
 - standard formats
 - formats with freely available specifications
- supported by free software
- supported on many platforms
- small in file size

・ロト ・ 何ト ・ ヨト ・ ヨト

Product Lifecycle Management

Product Lifecycle Management (PLM) systems offer the following facilities:

- versioning
- access control
- cross-file linkages
- cross-system linkages
- portals for activities and collaboration

But

- Iimited channels for information flow
- no preservation planning tools

4 E 6 4 E 6

PANIC

J Hunter, S Choudhury. 2006. 'PANIC: an integrated approach to the preservation of composite digital objects using Semantic Web services.' International Journal on Digital Libraries 6(2): 174–183.

・ロト ・ 何ト ・ ヨト ・ ヨト

CRiB

M Ferreira, A A Baptista and J C Ramalho. 2006. 'A Foundation for Automatic Digital Preservation.' *Ariadne* 48. http://www.ariadne.ac.uk/issue48/ferreira-et-al/

iPRES 2008 29 September 2008

э

・ロト (雪) (モート・ヨト

PLANETS

A Farquhar, H Hockx-Yu. 2007. 'Planets: Integrated Services for Digital Preservation.' International Journal of Digital Curation 2(2):88–99.

iPRES 2008 29 September 2008

ъ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Desiderata for PLM

- Flexible, modular and consistent approach to communicating design information
- Preservation planning:
 - registry of format characteristics
 - registry of format migration services
 - registry of evaluations of preservation actions
- How can we add these?

A 3 1 A 3 1

Lightweight Models with Multilayered Annotations

- Geometry held in lightweight visualization formats (as well as the original CAD model)
- Everything else held in one of a number of sets of annotations layered on top the model

イロト イポト イヨト イヨト

Layering annotations

Different annotation layers for different **viewpoints** (design, manufacture, service) and for different **security levels** (internal, public)

Geometry layer

• • = •

E

Workflow

29 September 2008

LiMMA tools

NX3 CAD system

iPRES 2008 29 September 2008

LiMMA tools

X3D lightweight viewer

iPRES 2008 29 September 2008

LiMMA tools

iPRES 2008 29 September 2008

Registry/Repository of Representation Information for Engineering

- Holds information about format characteristics and migration services
- Uses custom XML format for storage

4 E 6 4 E 6

RRoRIfE

- Searches for formats suitable for a given purpose
- Searches for migration paths suitable for a given purpose

iPRES 2008 29 September 2008

ヘロト ヘアト ヘヨト ヘ

Significant Properties

- Definition: those aspects of a digital object which must be preserved over time in order for it to remain accessible, usable and meaningful (A Wilson. 2007. InSPECT Significant Properties Report. AHDS/National Archives.)
 - Relative to object
 - Relative to purpose
- Working definition for RRoRIFE: those aspects of a digital object which any new expression of that object must exhibit in order to fulfil its intended function while being faithful to the original

- Exact geometry versus approximate geometry
- Construction modelling history
- Geometry-related metadata (tolerances, finishes, etc.)
- Transmission of the model over the Internet
- Persistent identification of (subsets of) geometry

Image: A matrix

2D Geometry

- Point
- Polyline
 - Line
- Conic arc
 - Elliptical arc
 - Circular Arc
- Open composite
- curve
- Ellipse
 - Circle

- Polygon
 - ► Triangle
 - Rectangle
 - Square
- NURBS curve
 - Rational Bézier curve
 - Non-rational Bézier curve
 - Cubic Bézier curve
 - Quadratic Bézier curve

・ コ ト ・ 雪 ト ・ 雪 ト ・ ヨ ト

Closed composite curve

3D Geometry

- Point cloud
- Helix
- Plane
- Ellipsoid
 - Sphere
- Cylinder
- Cone
- Cuboid
 - Cube
- Torus
- Translation surface

- Normal swept surface
 - Polylinear swept surface
 - Extrusion surface
 - Swung surface
 - Rotation surface
- Lofted surface
 - Ruled surface
- NURBS surface
 - Rational Bézier surface
 - Non-rational Bézier surface
- Mesh of surface segments
 - Mesh of tessellating triangles

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

iPRES 2008 29 September 2008

Geometric construction techniques

- Constructive Solid Geometry
- Boundary representation
- Trimmed surfaces
- Parameterized re-use of instances
 - Simple re-use of instances
- Construction history modelling
- Multiple alternative representations
 - Levels of detail

(4) 国 (4) \Pi (4) \Pi

Geometry-related metadata

- Feature semantics
- Material metadata
- Geometric dimensioning and tolerancing
 - Dimensions
- Assembly node metadata
- Assembly hierarchy

Compression and identification

- Field-wise compression
- Stream-wise compression
- Whole-file compression
- Streaming
- Identification of subassemblies
- Identification of parts
- Identification of surfaces
- Identification of edges
- Identification of vertices

1 **3 1 1 3 1**

Applications

File formats: levels of support

- ► Full
- Partial
- None

Processing software: levels of preservation

- Good
- Fair
- Poor
- None

Further work

LiMMA

- Automatic extraction of CAD information to annotations
- Recombination of annotations and geometry into CAD model

RRoRIfE

- Synchronization with standard registries
- Extension beyond significant characteristics
 - openness of formats
 - price, availability and customizability of software
 - evaluations of previous preservation actions

イロト イポト イヨト イヨト

Conclusions

- PLM systems need more components and more modular systems for curation and preservation
- LiMMA provides flexible information flows throughout the lifecycle
- RRoRIFE provides preservation planning capabilities
- Still a lot of work to do before being ready for use.

・ コ ト ・ 雪 ト ・ 雪 ト ・ ヨ ト

Thank you for your attention

Any questions?

iPRES 2008 29 September 2008

э.

ヘロト 人間 とくほとくほとう