
BRIEFING PAPER: THE ADOBE EXTENSIBLE

METADATA PLATFORM (XMP)

ALEX BALL

kim11rep015ab10.pdf

ACCESS LEVEL: 1

ISSUE DATE: 22 FEBRUARY 2007

APPROVED BY: MANSUR DARLINGTON

DATE APPROVED: 15 MARCH 2007



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

1 INTRODUCTION

The Adobe eXtensible Metadata Platform (XMP) was introduced to Adobe products to solve
the problem of embedding a wide variety of metadata into various different file formats using
a common approach [Adobe 2001]. The approach chosen involves the use of the World
Wide Web Consortium’s Resource Description Framework (RDF) in XML format as the vehicle
for expressing metadata, coupled with some proprietary wrapper tags and custom schemata
[Adobe 2005b].

This briefing paper looks at the nature of XMP, its possibilities and limitations.

2 THE RESOURCE DESCRIPTION FRAMEWORK

This section provides a short introduction to RDF, in particular RDF/XML, as a means of
expressing metadata [W3C 2004].

RDF is based on the principle of representing the properties of objects, and the relation-
ships between objects, as simple triples of data: a subject (the resource being described), a
predicate (a defined relationship or property) and an object (the value of the property, or the
related resource). For example, a book may be described by the following triple:

Subject: Book1 Predicate: dc:title Object: “The fall and rise of the yo-yo”

The predicate dc:title is an abbreviation of 〈http://purl.org/dc/elements/1.1/title〉,
which is the URI of its definition. This triple may be represented using an RDF diagram:

Book1
dc:title The fall and rise

of the yo-yo

where oval containers represent resources (things), rectangular containers represent literals
(strings, numbers, etc.) and arrows represent predicates. The same triple can also be
represented using RDF/XML:

(1)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>The fall and rise of the yo-yo</dc:title>

</rdf:Description>

...

RDF allows for literals to be given a type to enable disambiguation; for example, “1001”
could be a decimal integer, a binary integer, a year or a string. In many cases, the type can
be derived from the definition of the predicate, but in other cases it can be given explicitly as
follows.

Subject: Book1 Predicate: dc:date Object: “1989”^^xsd:date

would be written in RDF/XML as:

(2)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1989</dc:date>

</rdf:Description>

...

1 of 11

http://purl.org/dc/elements/1.1/title


BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

This form of expression allows the range of available data types to be fully extensible. The
XML Schema namespace used here provides nineteen primitive data types (including string,
boolean, decimal, duration, time, date) and twenty-five derived data types (including
integer, byte, language). RDF itself defines only one datatype, XMLLiteral, although
using this directly involves having to canonicalize the XML fragment according to the XML
Exclusive Canonicalization recommendation [W3C 2002]. The easier way of including XML
fragments is to use rdf:parseType="Literal" instead of the rdf:datatype attribute, in
which case the XML can be included without being canonicalized.

Various levels of complexity are achievable simply by allowing resources to appear in as
many triples as needed, as either subject or object. RDF also permits anonymous resources
— resources without URIs to identify them — to express situations where resources are
identified solely by their properties; such resources are known as blank nodes. An example
of a blank node follows:

Book1

The fall and rise

of the yo-yo
dcterms:

RFC1766

EN

dc:title

dc:language

rdfs:isDefinedBy

English

rdf:value

rdfs:label

RDF/XML provides several different ways of expressing this, for example using internal
identifiers:

(3)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>The fall and rise of the yo-yo</dc:title>

<dc:language rdf:nodeID="foo"/>

</rdf:Description>

<rdf:Description rdf:nodeID="foo" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:value>EN</rdf:value><rdfs:label>English</rdfs:label>

<rdfs:isDefinedBy rdf:resource="http://purl.org/dc/terms/RFC1766"/>

</rdf:Description>

...

or nested rdf:Description elements:

(4)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>The fall and rise of the yo-yo</dc:title>

<dc:language>

<rdf:Description xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:value>EN</rdf:value><rdfs:label>English</rdfs:label>

<rdfs:isDefinedBy rdf:resource="http://purl.org/dc/terms/RFC1766"/>

</rdf:Description>

</dc:language>

</rdf:Description>

...

or even a property-and-node element:

(5)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

2 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

<dc:title>The fall and rise of the yo-yo</dc:title>

<dc:language rdf:parseType="Resource">

<rdf:value>EN</rdf:value><rdfs:label>English</rdfs:label>

<rdfs:isDefinedBy rdf:resource="http://purl.org/dc/terms/RFC1766"/>

</dc:language>

</rdf:Description>

...

One special use of blank nodes in RDF is to handle situations where the a subject is linked
to several objects by the same predicate. These objects can be collected together by a blank
node that represents a list, the properties of which can be further refined. RDF provides
two types of list: non-exhaustive lists, known as containers, and exhaustive lists, known as
collections. The three types of container provided by RDF are rdf:Alt, rdf:Bag and rdf:Seq;
these imply, respectively, that the list items are alternative expressions of the same thing, an
unordered assortment of different things, or a sequence of different things. For example, a
primary and secondary author can be listed as follows on an RDF diagram:

Book1 Primary Author

Secondary Author

rdf:Seq

rdf:_1

rdf:_2

rdf:type

dc:creator

or like this in RDF/XML:

(6)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>

<rdf:Seq>

<rdf:li>Primary Author</rdf:li>

<rdf:li>Secondary Author</rdf:li>

</rdf:Seq>

</dc:creator>

</rdf:Description>

...

There are a few quirks of RDF/XML evident in this example. The first is the rdf:Seq element
which is an example of a typed node element: an abbreviation of an rdf:Description

element and the rdf:type element contained within. The second is that rdf:li elements
have been used to generate automatically the rdf:_1 and rdf:_2 predicates.

To imply that no other items belong to the list, collection syntax can be used. This syntax
does not distinguish between ordered and unordered lists.

3 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

Book1

rbstaff:

12345

dc:creator

rdf:first

rdf:rest
rbstaff:

54321

rdf:nil

rdf:first

rdf:rest

This may be expressed literally in RDF/XML:

(7)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator rdf:parseType="Resource">

<rdf:first rdf:resource="http://www.redbrick.ac.uk/staffid/12345"/>

<rdf:rest rdf:parseType="Resource">

<rdf:first rdf:resource="http://www.redbrick.ac.uk/staffid/54321"/>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</rdf:rest>

</dc:creator>

</rdf:Description>

...

but RDF/XML defines a compact way of expressing collections:

(8)...

<rdf:Description rdf:about="#Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator rdf:parseType="Collection">

<rdf:Description rdf:about="http://www.redbrick.ac.uk/staffid/12345"/>

<rdf:Description rdf:about="http://www.redbrick.ac.uk/staffid/54321"/>

</dc:creator>

</rdf:Description>

...

One other sophisticated use of RDF is the ability to provide RDF statements about RDF
statements. The long way of doing this is to reproduce the statement using special tags
(rdf:Statement, rdf:subject, rdf:predicate, and rdf:object) and add in appropriate
metadata:

(9)...

<rdf:Description rdf:ID="Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title>The fall and rise of the yo-yo</dc:title>

</rdf:Description>

<rdf:Statement rdf:about="#triple1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:subject rdf:resource="#Book1"/>

<rdf:predicate rdf:resource="http://purl.org/dc/elements/1.1/title"/>

<rdf:object>The fall and rise of the yo-yo</rdf:object>

<dc:creator>A Cataloguer</dc:title>

</rdf:Statement>

...

A more efficient and compact way of doing this to assign an rdf:ID directly to the statement
when it first appears:

(10)...

4 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

<rdf:Description rdf:ID="Book1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:title rdf:ID="triple1">The fall and rise of the yo-yo</dc:title>

</rdf:Description>

<rdf:Description rdf:about="#triple1" xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>A Cataloguer</dc:title>

</rdf:Description>

...

The correct XML wrapper for RDF/XML statements is the rdf:RDF element. This element
may be omitted if there is only one top-level node element, but it is recommended to include
it anyway. Thus a full RDF/XML document would look like this:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="#Book1">

<dc:title>The fall and rise of the yo-yo</dc:title>

</rdf:Description>

</rdf:RDF>

3 THE XMP STORAGE MODEL

XMP metadata is normally encoded as an XMP packet, to be embedded in any file format that
supports embedded metadata files. Packets are demarcated using proprietary prologue and
epilogue tags.

<?xpacket begin="" id="W5M0MpCehiHzreSzNTczkc9d"?>

...

<?xpacket end="r"?>

The content of the begin attribute defines the encoding and byte order for the packet. If
left empty, the attribute specifies UTF-8; otherwise the attribute must contain the Unicode
zero-width non-breaking space character (U+FEFF), as this disambiguates the various Uni-
code encodings and byte orders. In UTF-8, U+FEFF is encoded as 0xEF 0xBB 0xBF, which
when interpreted as ISO/IEC 8859-1 encoding becomes ‘ï»¿’ [ISO/IEC 10646:2003; RFC 2781;
RFC 3629].

The content of the id attribute is a text string that may be used as a differentiation
mechanism should the XMP specification be altered in future.

The content of the end attribute declares whether the packet can be edited in situ without
changing its size (end="w") or not (end="r"). When the packet is declared editable, sufficient
whitespace padding should be included at the end of the packet to allow for the growth of the
packet contents.

These packet tags are required except when the XMP metadata is to be embedded in an
XML file, in which case they must be omitted. In the special case that the XML file is empty
except for the XMP metadata, it is recommended that the file be given a .xmp extension and
be served with an application/rdf+xml MIME type.

The XML element used for wrapping XMP metadata is the xmpmeta element. While this is
optional, its use is recommended when inserting XMP metadata into XML streams, to mark
the contents as being XMP’s simplified RDF instead of pure RDF.

<x:xmpmeta xmlns:x="adobe:ns:meta/">

...

</x:xmpmeta>

5 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

4 USING RDF IN XMP

The main body of an XMP packet or stream is written in RDF/XML, and hence begins and
ends with matching rdf:RDF tags. In contrast to pure RDF/XML, these tags are always
required.

The limitations of Adobe’s XMP readers and writers have lead to simplifications in the
XMP implementation of RDF/XML. The documented limitations are as follows:

• The top level node elements must be rdf:Description elements, not typed nodes or
rdf:Statement elements.

• All top level rdf:Description elements must have the same (possibly blank) value for
their rdf:about attributes.

• The attributes rdf:ID and rdf:nodeID are stripped out silently.

• The attributes rdf:aboutEach and rdf:aboutEachPrefix are not supported at all and
cause errors.

• The attribute rdf:parseType="Literal" is not supported, meaning that XML snippets
can only be included as the object of RDF triples in XMP using the rdf:datatype="...

XMLLiteral" method.

Additionally, experimentation with Adobe tools shows that support for typed nodes below
the top level is limited to a few common types such as rdf:Alt, rdf:Bag and rdf:Seq. It also
appears that the attribute rdf:parseType="Collection" is not supported, meaning construc-
tions like extract (8) cannot be used, although an alternative expression such as extract (7) is
permitted. Use of the attribute rdf:datatype appears to disable XMP reading and writing in
Acrobat 7, allowing an XMP packet to pass through document editing unchanged.

In consequence, several features of RDF are disabled in XMP. Blank nodes are expressed
by default in the manner of extract (5), although constructions like extract (4) are permitted;
constructions like extract (3) are forbidden. It is not possible to provide any form of meta-
metadata as constructions like extracts (9) and (10) are forbidden.

Further limitations are imposed for RDF schemata that Adobe itself controls, including
ones implementing the EXIF metadata standard for images [JEITA CP-3451], and also for
Dublin Core. While Dublin Core itself is highly flexible, the XMP specification requires that it
be used in a more regimented fashion.

• The elements dc:description, dc:rights and dc:title must contain an rdf:Alt

list, with each list item having an xml:lang attribute with a value drawn from the
language codes set out in RFC 3066. The default (main) list item has the attribute
xml:lang="x-default", duplicating another list item if necessary.

• The elements dc:contributor, dc:language, dc:publisher, dc:relation,
dc:subject and dc:type must contain an rdf:Bag list.

• The elements dc:creator and dc:date must contain an rdf:Seq list.

• Dates must be formatted according to the guidelines set out in the W3C profile of ISO
8601, e.g. 2004-10-23T18:00:00Z.

• The element dc:format must contain a MIME type as defined in RFC 2046.

• The element dc:language must list languages using the language codes set out in RFC
3066.

6 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

5 USING XMP IN ADOBE APPLICATIONS

While Adobe applications can process XMP metadata without intervention, most also provide
some form of interface allowing users to view and edit XMP metadata through the applica-
tion.

Adobe Photoshop v7 provides a file information dialogue box with five pre-set panels:
General, Keywords, Categories, Origins and EXIF (see figure 1). The fields in these panels
interact with the entries in the XMP packet. Tools are also provided for importing, appending
and exporting XMP information. The dialogue box also provides the option of preserving or
removing any XMP information not displayed by the panels.

Figure 1: File information panel in Adobe Photoshop v7

Adobe Acrobat v6+ and other more recent Adobe applications use a more sophisticated
interface. In Acrobat this is hidden behind the normal document properties dialogue box
(see figure 2). The advanced metadata display comes with one default file information panel
(‘Description’, displayed first) and an advanced XMP metadata display panel (see figure 3).
It is also possible to add custom file information panels using XML files saved to a specific
location (see figure 4).

Unfortunately, the syntax used for designing file information panels places additional
restrictions on complexity of metadata that can be expressed [Adobe 2005a]. Panel fields
can only read or write RDF triples that have the document in question as the subject and
a plain (untyped) literal, resource or RDF collection of list items as the object. Thus of the
RDF extracts shown in this document, only extracts (1) and (6) can be created.

The default file information panel, ‘Description’, has a number of important fields on it
that contribute to six different XMP schemata. Table 1 shows which panel fields map on to
which statements in these six schemata. Thus, if any of the RDF statements read by that
panel contain complex RDF constructs, they will be ignored and overwritten in memory
by empty RDF statements, even if the complex RDF constructs are supported by the XMP
specification. The consequence of this being the default panel is that any attempt to view
the XMP information through the user interface, let alone edit it, will corrupt it if any of
the panel’s fields map onto a complex RDF statement. Of course, this corruption is not
committed to the file unless the interface is exited with the OK buttons and the file is saved.

7 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

Figure 2: Document properties dialogue box in Adobe Acrobat v7

Figure 3: Advanced XMP metadata display panel in Adobe Acrobat v7

8 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

Figure 4: Custom file information panel in Adobe Acrobat v7

Table 1: Mappings between the default Description panel and built-in XMP schemata

Panel field PDF Photoshop TIFF XMP Core XMP Rights Dublin Core

Document
Title

Title Title Title (alt) Title (alt)

Author Author Author Artist
Authors (seq),

Author
Creator (seq)

Description Subject Caption
Image

Description
Description (alt) Description (alt)

Description
Writer

CaptionWriter

Keywords Keywords (bag) Keywords (bag) Subject (bag)

Copyright
Status

Marked Marked

Copyright
Notice

Copyright Copyright (alt) Copyright (alt) Rights (alt)

Copyright
Info URL

WebStatement WebStatement

Created CreationDate CreateDate

Modified ModDate DateTime ModifyDate

Application Creator Software CreatorTool

Format Format Format

9 of 11



BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

The advanced XMP metadata display panel (figure 3) is more expressive, as it can handle
arbitrary blank nodes, and thus can be used to view the full range of RDF statements that
XMP can handle. Of course, this is only of benefit for RDF statements not already rewritten
by the Description panel and any other panels viewed.

6 USING XMP IN OTHER APPLICATIONS

Support for XMP outside of Adobe applications is most obvious in areas where there is a
distinct advantage to hiding metadata within files, as opposed to displaying metadata in
the rendered file or keeping separate registers of metadata. A number of different content
management systems and digital asset management systems now use XMP, for example EMC
Documentum, IBM DB2 and MediaBeacon R3volution [Adobe 2007]. Support is particularly
strong for digital images, though mainly in dedicated image management tools rather than
image editors. Of particular note are the free Microsoft Photo Info plugin for Windows,1

and the Imagero Java library for reading image files.2 Support for using XMP directly in text
documents is still poor outside Adobe tools, with no explicit XMP support for Microsoft Office
or OpenOffice.org.

One of the few ways of using XMP with text documents is through LATEX. LATEX is a
document typesetting language built on the TEX typesetting engine. There are currently
two LATEX packages available on the Comprehensive TEX Archive Network (CTAN) that allow
XMP packets to be embedded in PDF documents: xmpincl and hyperxmp. The xmpincl
package3 allows a previously composed XMP packet to be embedded in a PDF using pdfLATEX.
The hyperxmp package,4 on the other hand, collects information about the author, title,
subject, keywords, copyright, and licence URL of a document through a mixture of its own
commands and those provided by the package hyperref — commonly used for enhancing
PDF documents created using LATEX — and both constructs and embeds an appropriate XMP
packet. This latter package not only works with pdfLATEX but also with standard LATEX coupled
with the utility dvipdfm.

Ghostscript is popular utility for interpreting and writing PostScript and PDF files.5 When
converting PostScript documents to PDFs of version 1.4+, Ghostscript automatically creates
an XMP packet that records its involvement and any suitable information (e.g. title, author)
provided in the metadata at the start of the PostScript file.

While editing and embedding XMP is poorly supported in the main, reading XMP is a
much simpler case. One of the key requirements for embedding XMP information in files
is that it must be included as text rather than in a compressed binary format, even when
embedded in a binary file format. Thus it is in principle easy for any application to extract
XMP information; it is certainly possible to do this manually using a text editor.

7 CONCLUSIONS

The primary usefulness of XMP is that it provides a way of embedding RDF/XML in arbitrary
documents, whether text-based or binary. Part of the reason for its success in the area of
digital imagery is that, through being extensible and XML-based, it can encode the same

1. URL: 〈http://www.microsoft.com/windowsxp/using/digitalphotography/prophoto/photoinfo.mspx〉.
2. URL: 〈http://reader.imagero.com/〉.
3. TEX Catalogue entry: 〈http://www.tex.ac.uk/tex-archive/help/Catalogue/entries/xmpincl.html〉
4. TEX Catalogue entry: 〈http://www.tex.ac.uk/tex-archive/help/Catalogue/entries/hyperxmp.html〉
5. URL: 〈http://www.cs.wisc.edu/~ghost/〉

10 of 11

http://www.microsoft.com/windowsxp/using/digitalphotography/prophoto/photoinfo.mspx
http://reader.imagero.com/
http://www.tex.ac.uk/tex-archive/help/Catalogue/entries/xmpincl.html
http://www.tex.ac.uk/tex-archive/help/Catalogue/entries/hyperxmp.html
http://www.cs.wisc.edu/~ghost/


BRIEFING PAPER: THE ADOBE EXTENSIBLE METADATA PLATFORM (XMP)

information as rival embedded metadata schemes — EXIF and IPTC in particular — in an
easily processable form, while allowing additional flexibility.

On the other hand, XMP’s highly conservative profile of RDF/XML and (more importantly)
its unduly prescriptive handling of the Dublin Core metadata schema limit its usefulness as
a method of encoding document metadata. The lack of tools for editing, embedding and
viewing XMP, and the deficiencies of those provided by Adobe, are a further discouragement
to authors wishing to take advantage of what could otherwise be a powerful method of
providing rich metadata sets with documents.

8 ACKNOWLEDGEMENTS

This work is supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) and the Economic and Social Research Council (ESRC) under Grant Numbers
EP/C534220/1 and RES-331-27-0006.

REFERENCES

Adobe. 2001. ‘A manager’s introduction to Adobe eXtensible Metadata Platform, the Adobe XML metadata
framework.’ Adobe Systems Incorporated.

———. 2005a. Custom Panels for XMP File Info. San Jose, CA: Adobe Systems. URL: 〈http://www.adobe.com/
products/xmp/downloads/XMP_CustomPanels.zip〉.

———. 2005b. ‘XMP specification.’ Adobe Systems Incorporated. URL: 〈http://partners.adobe.com/public/
developer/en/xmp/sdk/xmpspecification.pdf〉.

———. 2007. ‘Adobe XMP partners.’ Web page. Accessed 22 Feb. 2007. URL: 〈http://www.adobe.com/products/
xmp/partners.html〉.

ISO 8601:2004. ‘Data elements and interchange formats — Information interchange — Representation of dates
and times.’

ISO/IEC 10646:2003. ‘Information technology — Universal Multiple-Octet Coded Character Set (UCS).’

ISO/IEC 8859-1:1998. ‘Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin
alphabet no. 1.’

JEITA CP-3451. 2002. ‘Exchangeable image file format for digital still cameras: EXIF version 2.2.’ URL: 〈http:
//www.exif.org/Exif2-2.PDF〉.

RFC 2046. 1996. ‘Multipurpose Internet mail extensions (MIME) part two: Media types.’ URL: 〈http://tools.
ietf.org/html/rfc2046〉.

RFC 2781. 2000. ‘UTF-16, a transformation format of ISO 10646.’ URL: 〈http://tools.ietf.org/html/rfc2781〉.
RFC 3066. 2001. ‘Tags for the identification of languages.’ URL: 〈http://tools.ietf.org/html/rfc3066〉.
RFC 3629. 2003. ‘UTF-8, a transformation format of ISO 10646.’ URL: 〈http://tools.ietf.org/html/rfc3629〉.
W3C. 1997. ‘Date and time formats.’ A profile of ISO 8601. URL: 〈http://www.w3.org/TR/NOTE-datetime〉.
———. 2002. ‘Exclusive XML canonicalization version 1.0.’ World Wide Web Consortium Recommendation. URL:

〈http://www.w3.org/TR/xml-exc-c14n/〉.
———. 2004. ‘RDF primer.’ W3C Recommendation, World Wide Web Consortium. URL: 〈http://www.w3.org/

TR/rdf-primer/〉.
All links were correct on 22 February 2007.

This work is licensed under the Creative Commons Attribution-ShareAlike 2.0 England &
Wales Licence. To view a copy of this licence, visit

〈http://creativecommons.org/licenses/by-sa/2.0/uk/〉 or send a letter to Creative
Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

11 of 11

http://www.adobe.com/products/xmp/downloads/XMP_CustomPanels.zip
http://www.adobe.com/products/xmp/downloads/XMP_CustomPanels.zip
http://partners.adobe.com/public/developer/en/xmp/sdk/xmpspecification.pdf
http://partners.adobe.com/public/developer/en/xmp/sdk/xmpspecification.pdf
http://www.adobe.com/products/xmp/partners.html
http://www.adobe.com/products/xmp/partners.html
http://www.exif.org/Exif2-2.PDF
http://www.exif.org/Exif2-2.PDF
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2781
http://tools.ietf.org/html/rfc3066
http://tools.ietf.org/html/rfc3629
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://creativecommons.org/licenses/by-sa/2.0/uk/

	Introduction
	The Resource Description Framework
	The XMP Storage Model
	Using RDF in XMP
	Using XMP in Adobe applications
	Using XMP in other applications
	Conclusions
	Acknowledgements
	References

