
further languages being added as necessary.

abstract

C definition S3 definition

S3-abstract
 relation

C-abstract
relation

derived
conversion

Further language

Figure 6: Mixed-language programming

Notice that due to the use of encapsulated
methods, our requirement that existing tools still
be supported is met. By \hiding" the workings of
the conversions beneath the abstract de�nition,
a user of the database not concerned with mixed
language working can continue to use modes as
before, as the use of a mode in an S3 situation
will extract the relevant �eld.

5 CONCLUSIONS

The corner-stone of the project is Active Ob-
jects. The increased exibility this will provide
within the existing software development environ-
ment will not only facilitate the enhanced CADES
methodology and mixed language work, but will
allow tools which need to access databases to be
written more easily. Further, our decision to use
an object-oriented language as the basis for Ac-
tive Objects means that such tools can be de-
signed and implemented more reliably and with
maximum reuse of software.
Ei�el has turned out to be an excellent choice

for the Active Objects Processor implementation
language. Multiple inheritance has allowed us
to separate the de�nitions corresponding to �elds
stored on the database from active �elds, provid-
ing the possibility to reuse the latter.
The Ei�el language provides an interface to C

which can be used to invoke existing tools. The
Ei�el environment can generate C source code
from an Ei�el library which can be invoked from
existing tools. These interfaces are essential for
this work, as the Active Objects Processor must
be integrated into existing tools.

6 FUTURE WORK

The next phase of the project will be to en-
hance the S3 systems programming language with
object-oriented features. This will increase the

power of S3 and will enable software to be pro-
duced with less e�ort and reduced cost.

References

[Horowitz, 1991] M. L. Horowitz. An Intro-
duction to Object-Oriented Databases and
Database Systems. Technical Report CMU-
ITC-91-103, Information Technology Center,
Carnegie-Mellon University, August 1991.

[Hughes, 1991] J.G. Hughes, editor. Object-
Oriented Databases. Prentice-Hall Interna-
tional, 1991.

[Kernighan, 1988] B.W. Kernighan and D.M.
Ritchie. The C Programming Language.
Prentice-Hall International, 2nd edition, 1988.

[Meyer, 1988] B. Meyer. Object-Oriented Soft-
ware Construction. Prentice-Hall Interna-
tional, 1988.

[Meyer, 1992] B. Meyer. Ei�el: The Language.
Prentice-Hall International, 1992.

[Pearson, 1973] D.J. Pearson. CADES { com-
puter aided development and evaluation sys-
tem. Computer Weekly, 1973.

[Purtilo, 1991] J.M. Purtilo and J.M. Atlee.
Module reuse by interface adaption. Software
| Practice and Experience, 21(6), June 1991.

4 SUPPORT FOR MIXED

LANGUAGE WORKING

One of the areas covered by this project is the sup-
port of mixed language working. The idea here is
to allow a programmer to mix pieces of code writ-
ten in di�erent programming languages without
being concerned about the language in which a
called routine is written. Thus in a piece of code,
the function or procedure call foo(x) can be used
regardless of the source language in which foo is
implemented. Attempts have been made in this
direction (such as [Purtilo, 1991]), but not in a
way which copes transparently and exibly with
calls between a number of di�erent languages.

The bene�t of allowing this is obvious. Reuse of
existing code becomes easier, as we are no longer
restricted to using the original language. In
the application under consideration, the CADES
database contains a large amount of S3 code,
which we wish to be callable by those using lan-
guages other than S3, in particular C. However,
the approach used is applicable to combinations
of other languages, or even two di�erent imple-
mentations of the same language.

The di�culty with mixing languages is the
passing of arguments and results between rou-
tines. Take the example of STRINGs, for in-
stance, which are intuitively sequences of char-
acters. Consider the following piece of C code:

c rout(STRING s, int x)

f

...

foo(s);

...

g

where foo is a routine written in S3, expect-
ing a STRING. The problem is that strings have a
di�erent representation in S3 than in C (in C, a
string is implemented as a pointer to a null termi-
nated area of memory, whereas in S3, a descriptor,
containing type and size information as well as a
pointer is used), so we must perform some conver-
sion on the argument before passing it to the rou-
tine. After running the code through the Mixed
Language Processor, something like the following
would be expected:

c rout(STRING s, int x)

f

...

Desc desc;

desc = convert c string to s3(x);

foo(desc);

...

g

Having noted that foo expects a parameter of
type STRING (this will be recorded in the holon
interface owned by foo), and that foo is an
S3 holon (again information obtained from the
database), the Mixed Language Processor has in-
serted the necessary conversion procedure to en-
sure that the argument passed to foo is now in
S3's STRING format.

The approach taken to solve this problem is to
alter the way in which modes or types are stored
on the database, adding an extra layer of abstrac-
tion. At present, a mode record has two main
�elds, one recording the name of the mode, the
other with the S3 de�nition.

We add some extra �elds which provide a de-
scription of the type, independent of the actual
representations used in the programming lan-
guages. The language used to describe this \ab-
stract" description will contain constructs such
as seq of and basic types like character or integer.
We also need to store the actual representations
in the programming languages, as before, but in
addition, we also store the relationships between
these programming language representations and
the abstract description.

From these relationships, we can derive an al-
gorithm, or method, for converting an instance
of a type in one representation to an instance in
another representation. So in the example above,
we would produce an algorithm which takes an
S3 descriptor, and returns a C pointer to an ap-
propriate area of memory. Although this method
is derived via the relationships stored, it is con-
sidered to be a �eld on the record, and is thus
an example of an \Active Field", as a request for
retrieval of this �eld can result in the invocation
of some computation.

A further bene�t of using this approach can
be seen if we wish to add further languages. If
conversions were \hard-wired" into the system,
for each language we would have to add conver-
sions to and from all other languages currently
supported. If conversions are derived via the ab-
stract type, then only this relationship need be
added, with the conversions between languages
derived.

The situation is illustrated in Figure 6, with

Mode LList Mode Date

Mode String

parent of

parent of

parent of

Figure 4: Modes in CADES

Next, a function can be de�ned which operates
on a Date (in fact it prints one out in the form
January 13, 1992). Note that printf, a func-
tion which prints text, is part of the standard C
library.

void print(Date d)

f

printf("%s %i, %i\n",

d.month,

d.day,

d.year);

g

This will result in the addition of two new objects
to the database, a holon and a holon interface,
and links between them as illustrated in Figure 5.
It is assumed that a holon interface printf al-
ready exists, and a usage link is added from the
holon print to the printf interface.

Mode LList Mode Date

Mode String

parent of

parent of

parent of

Holon print Holon Interface
print

uses

owns

Holon Interface
printf

uses

Figure 5: Holon and interface objects

If a further function to print out a list of dates
{ printList { which makes use of print were
de�ned and entered into CADES, then two more
objects (a holon and a holon interface) would be
added, along with the same sort of usage (from
the holon and interface to the modes) and owner-
ship (from holon to interface) links as above. In

addition, a usage link would be added between
the printList holon and the print holon inter-
face, to record the fact that printList makes a
call to print.

A program called an Environment Processor ex-
ists which, given the name of a holon, generates a
�le containing the text of the named holon, along
with all the subsidiary de�nitions required by that
holon (for example, all the type de�nitions which
it uses). This �le can then be passed directly to
the C compiler.

Controlling and managing the design work and
code which is produced in large software devel-
opment projects has long been recognised as a
problem, and many attempts have been made
to address it. Developers in the Unix environ-
ment often use tools like sccs and rcs for main-
taining a number of di�erent versions of a prod-
uct { CADES addresses this problem too, and
can store multiple versions of objects and links.
The Unix make utility ful�lls a similar role to
CADES in that it records dependency informa-
tion, and the method by which an entire prod-
uct or system is constructed from its component
parts. The CADES approach has a few advan-
tages over Unix's make and similar tools. Firstly,
CADES enforces its philosophy more than make

does, so that users are e�ectively forced to split
code up into small units, and record all the depen-
dency information as links (numerous tools exist
to help with this kind of thing). This means that
source code and dependency and construction in-
formation is stored in a very uniform way, which
is not always the case on Unix systems. Sec-
ondly, the dependency and linking mechanisms in
CADES record more information than make does
{ not only is the fact that some entity a depends
on some entity b recorded, but also information
about the nature of (or reason for) this depen-
dency (e.g., does a use b, or is a a parent of b).
This means that speculative queries can be made
of the CADES system (for instance, \what hap-
pens if I change this interface"). In an environ-
ment where many people are working on di�er-
ent aspects of the same development, or di�erent
subsystems of the same product, such dependency
tracing facilities must be available if one is to have
any faith in the reliability of the design and main-
tenance process.

3 CADES METHODOLOGY

Here we discuss the way in which the CADES
database [Pearson, 1973] is used as a reposi-
tory for source code objects, and to capture de-
sign information. An example is given show-
ing how CADES might be used in an environ-
ment where source code is written in the C lan-
guage [Kernighan, 1988]. CADES was originally
(and still is) used to store code written almost ex-
clusively in the S3 language, but the data model
is su�ciently exible to support many impera-
tive programming languages with relatively little
change. Some of the current e�ort is directed to-
wards providing support for C programming in
the CADES environment, and future work will
look at supporting object-oriented programming
languages.

Entities in CADES are typed and named, and
have �elds (whose values are strings or numbers).
The types of objects which exist in a particular
instance of a CADES-like database are de�ned
by a schema, as are the �elds which each type
of object can have. There are four basic types
of object in the schema of the CADES system,
and these correspond to the main elements of
imperative programs. Mode objects are used to
represent data type de�nitions, Data objects rep-
resent global variable declarations, Holons repre-
sent the bodies of procedures or functions (i.e.
blocks of code), and Holon Interfaces represent
headers or signatures of procedures or functions.
Mode, Data, and Holon Interface objects all have
a �eld called Decl which stores the text of the
item's declaration, and Holon objects have a �eld
called Body which stores the text of the proce-
dure's code4. The separation between procedures
and their interfaces may, on �rst sight seem un-
wieldy and overly complex. The justi�cation for
the split is founded in the belief that a proce-
dure's speci�cation should be represented sepa-
rately from its implementation. The interface rep-
resents the `external' or `customer' view of the
procedure, whereas the holon object stores the
actual implementation (which should not be of
interest to customers).

As well as storing collections of objects,
CADES maintains links between them which

4Actually, Holons don't really have a Body property at

all. The text is stored in a �le and Body is an active �eld

which returns the contents of the �le.

identify usage and dependency relationships, as
well as grouping information which serves to doc-
ument aspects of the development process. The
two most important classes of link are known as
`uses ' which record information about potential
executions, and `parent of', which records more
static structure. For example a holon is linked
to a holon interface by a `uses' link if the holon's
code contains a procedure call to the interface,
and if the de�nition of one data type mentions
the name of another, the �rst will be a `parent of'
the second. An `owns' link is used to connect a
holon and its corresponding interface.

The main motivation for storing units of source
code as nodes on a database, and document-
ing dependencies as links, was to aid con�gura-
tion management. Tools exist which traverse the
database, following usage and other links, collect-
ing together the code associated with nodes to
construct entire programs which can be passed to
the relevant compiler. The links allow the e�ects
of changes and modi�cations to be tracked, so
that when an object is changed, everything which
depends on it can be checked for consistency, and
possibly edited, reconstructed, or recompiled. Be-
fore changes are made to the database, the impact
of these changes can be investigated. A further
advantage of managing source code in such a `�ne
grained' way is that it encourages code reuse by
storing code in small units and maintaining all
the dependency information.

The following example illustrates how the
database nodes and links are used by consider-
ing some simple de�nitions in C. First, a type
of linked list structures is de�ned, where the ele-
ments of the list are dates.

typedef struct LList f

Date item;

struct LList �nextg LList;

where dates are de�ned as

typedef struct f

int day;

String month;

int year;g Date;

These de�nitions are added to the database as
two Mode objects, with a `parent of' link between
them, and a `parent of' link between Date and the
mode String which is assumed to exist already
(see Figure 4). Note that, because of the recursion
in the de�nition, a circularity exists in the parent
of links (LList is a parent of itself).

DOD: DATE
update DOD(s: DATE)
NO OF BOOKS: INTEGER
AGE: INTEGER
update AGE(i: INTEGER)
WROTE: LINKS[BOOK]
new(nm: STRING)

end

Each �eld of the database record has up to two
Ei�el features associated with it | one for re-
trieval and one for update. Though we require
this for implementation reasons (we need to reg-
ister which �elds are updated so that we can ef-
�ciently transfer changes made by the applica-
tion to the physical database) it is also required
by the Ei�el language, in order to hide from the
client which features are actually implemented as
attributes.
Some �elds, like NO OF BOOKS, may not be

updatable. The implementation of the non-active
�elds simply accesses the database on which that
�eld is stored. The implementations of active
�elds (such as AGE) are Ei�el procedures and
functions. For example AGE might be imple-
mented as follows:

AGE: INTEGER is

do

if DOD=void then

Result :=
current date.year - DOB.year

else

Result := DOD.year - DOB.year
end

end

Links between records are features of the
generic type LINKS[X]where X is the record type
at the end of the link. This class is essentially
a linked list of X. Features of this class allow
links to be added, deleted and accessed as well as
providing an iterator to loop through the linked
records. Since these operations have side-e�ects
on the link, we provide a view of the relationship
via the class LINKS[X]. This is particularly im-
portant since active �elds themselves may make
use of links, and this fact should not be visible to
the client.
An example implementation of the �eld

NO OF BOOKS, which returns the number of
WROTE links from an AUTHOR will clarify this.

WROTE: LINKS[BOOK] is
-- implementation not important

NO OF BOOKS: INTEGER is

local

w: LINKS[BOOK];
do

w := WROTE;
from

w.start
until

w.o�right
do

Result := Result+1;
w.forth

end

end

We take a copy of the link object in order
to traverse it. In this way we avoid any un-
wanted side e�ects becoming visible to the user
of NO OF BOOKS, who may themselves be in
the middle of examining the same links.

2.5 Other Issues

Other issues that are not central to the above dis-
cussion, but may be of interest to some readers are
discussed briey below.

Insulation between tools written in Eif-

fel and the Active Objects Processor. If an
interface to the Active Objects Processor classes
should change (as a result of adding a new �eld
for example) the tools written in Ei�el would have
to be re-compiled if they used the Ei�el classes
directly. This is unacceptable as there may be
many tools. One solution to this problem requires
tools to use \look-alike" classes which commu-
nicate with the Active Objects Processor over a
static interface, enabling the run time linking and
storage management systems to be isolated.

Remote access to the Active Objects Pro-

cessor. A requirement placed upon the design
for Active Objects was that it should allow for
the possibility of access from client workstations.
This will be achieved by providing a variant of
the insulation mentioned above which invokes re-
mote feature access rather than local. In simple
terms, the static interface includes a communica-
tions link.

WRITTEN_BY

WROTE

PUBLISHED_BY

PUBLISHES

PUBLISHES

PUBLISHED_BY

REFERS_TO REFERENCED_BY

BOOK 095683

TITLE = SEALS

NO_OF_PAGES = 876

MARK_UP = 84

PUBLISHER SKUA

ADDRESS = ANTARCTIC

TURNOVER = 2861279

NO_OF_AUTHORS = 925

FAX = (071) 876 3948

AUTHOR BLOGGS

FIRST_NAME = FRED

DOB = 7/1/07

NO_OF_BOOKS = 23

AGE = 85

DOD =

BOOK 249587

TITLE = PENGUINS

NO_OF_PAGES = 23

MARK_UP = 93

Figure 2:

Active Objects Processor decides where the re-
quested information is stored and then accesses
that database. Note that from the user's point of
view there appears to be only one database.

2.4 The Active Objects Processor

The implementation language for the Active Ob-
jects Processor is the object-oriented language
Ei�el [Meyer, 1992]. We chose an object-oriented
language as the record structure of the database
�tted in well with classes. Database �elds are
then methods on these classes which access the
appropriate database. Also active �elds are meth-
ods on these classes which access and manip-
ulate the values of non-active �elds. In other
words an object-oriented schema corresponding
to the CADES database schema can be pro-
duced [Hughes, 1991]. Issues involved in the de-
sign of object-oriented databases are discussed in
[Horowitz, 1991].

The use of a general-purpose, computationally
complete language has the advantage of giving an
interface to the databases which is more easily

used within a program than DNL. User interfaces
can be written in that language using the classes
which represent the databases directly, as illus-
trated in �gure 3. Also, a full object-oriented lan-
guage means that code can be reused in several
tools if desired.

Ei�el was chosen because it provides the pro-
grammer with a more formal framework than
other object-oriented languages [Meyer, 1988].
Strong typing and the use of preconditions, post-
conditions and class invariants mean that tools
interfacing to the Active Objects Processor are
more reliable.

Below is the Ei�el class interface to the AUTHOR
database record.

class interface AUTHOR
creation

new
feature speci�cation

FIRST NAME: STRING
update FIRST NAME(s: STRING)
DOB: DATE
update DOB(s: DATE)

Tool

Back End

DNL

Front End

Figure 1:

These interfaces use a textual database query
language called DNL. 3 This language, which
will not be described in detail here, allows users
and tools to \navigate" around a network of
linked records and access �elds on these records.
Records are uniquely identi�ed by type and name.
Fields and links between records are identi�ed by
name.

Figure 2 illustrates a fragment of a bibliogra-
phy database. There are three record types in this
database | BOOK, AUTHOR and PUBLISHER. BOOKs
are identi�ed by their ISBN number, AUTHORs by
their surname and PUBLISHERs by their name.
Fields valid on BOOK records are TITLE and
NO OF PAGES. BOOK records are linked to AUTHOR

records via WRITTEN BY links, PUBLISHER records
via PUBLISHED BY links and so on. Note that for
each link there is a corresponding link in the re-
verse direction. Fields in italics are described be-
low.

2.2 Active Fields

Given this structure and software architecture the
problem is to enhance the database with \active
�elds". An example of an active �eld is the AGE
�eld of an AUTHOR record. The value of this �eld is
not actually stored on the database but is calcu-
lated from the DOB and DOD �elds. If the DOD �eld
has no value then the age of the author is calcu-
lated using the current date. Updating the AGE
�eld will result in the DOD �eld being updated.

This idea allows some of the tools which in-
terface to the front-end to become active �elds
and so be accessible from DNL. Also, �elds which
are currently inactive, like DOB, can become active

3Database Navigation Language

without the interface to the front-end changing.
This is essential if representations are to change
leaving the interface used by tools and users un-
changed. For example, we may decide to store a
date in microseconds and calculate the more fa-
miliar string of characters (7/1/07) from it. This
kind of feature is required for the mixed language
work, see section 4.

2.3 Proposed Software Architecture

Figure 3 describes the proposed architecture
which facilitates active �elds and maintains the
DNL interface so existing tools still work.

DNL

Eiffel

Tool

Front EndTool

Active Objects
Processor

Other
Databases

Other
DatabasesBack End

Figure 3:

The \Active Objects Processor" takes requests
which would normally be passed to the Back End,
evaluates the active �eld requests and calls the
Back End with the non-active �eld requests. To
incorporate an existing tool in the Active Ob-
jects processor, we �rst de�ne the output of the
tool as a new feature within the user view of the
database. The logic of the tool is then included
in the active objects processor as the implementa-
tion of that feature. The user interface aspects of
the tool however remain separate, which is why
there is still a `Tools' box in the new architec-
ture. This is in fact a classic client-server archi-
tecture, and will enable us to exploit new work-
station technology by moving the user interface
part away from the mainframe.

By extending the database schema used by the
front-end, requests to access �elds and records
not held on CADES can be generated. The

means of access to the repository, being used as
both a user interface and a tools interface.

The tools currently only support two languages
directly, S3 and SCL. S3 is an Algol68 derivative
which was developed at the same time as CADES
for the purpose of writing VME. SCL is the sys-
tem control language for VME, and is not unlike
S3. Support for other languages such as C and
COBOL is present but without the �ner grain rep-
resentation, the bene�ts of which are discussed in
section 3.

1.2 Assessment

To date this architecture has served us well. It
has enabled us to maintain and develop VME
over a period of 20 years with few of the prob-
lems of structural decay normally associated with
software engineering on this scale.

During the same time, however, the fundamen-
tal CADES tools have changed little. Extra tools
have been produced for speci�c purposes, and
some work has been done to improve general us-
ability, but there has been as yet no attempt to
exploit the new software engineering technologies
that have been developed since CADES was orig-
inally implemented.

Speci�cally,

� We require full support for newer languages
such as C, C++, Ei�el. In particular we need
seamless integration of components written
in di�erent languages, so that we can take
advantage of existing components and com-
ponents written elsewhere without prejudic-
ing our choice of language.

� In todays open world we can no longer a�ord
to develop products for VME only: we need
to be able to produce tailored products for a
range of environments from a single source.

� The development environment is still VME
based: we need to exploit the potential of
distribution to workstations, in particular to
provide improved user interfaces and better
integration with associated development ac-
tivities such as document production. By im-
plication the bene�ts of CADES will become
available to non-VME developers.

1.3 The Project

The objective of the project2 is to improve soft-
ware development productivity. We intend to do
this by introducing object oriented technology,
both in the tools themselves and in the supplied
development processes. This will be done in an
evolutionary fashion: one of the prime require-
ments is that the existing tools and methods must
continue to be supported.
We describe the �rst step as `Active Objects',

described in detail in section 2. The current
CADES database contains only base data: any
derived results are produced by running tools,
which present their results via some arbitrary
interface. We will provide the means whereby
these results can themselves be represented in
the CADES schema, such that their retrieval will
cause the appropriate tool to be executed. Be-
sides providing a clean and consistent user inter-
face, this also enables us to replace existing data
by some other form without impacting existing
tools. A particular application of this is seen in
the mixed language support, section 4, where we
replace the existing language speci�c declaration
of interfaces by a more abstract form from which
the original declaration can be reconstructed.
Other bene�ts of this work are that we will

provide a programming language interface to the
database as an alternative to the textual one, and
that we can include databases other than CADES
in the schema we present to the user. The choice
of the vehicle for this (Ei�el) is discussed in 2.4.

2 EIFFEL AS A DATABASE

INTERFACE LANGUAGE

2.1 The Current Architecture

The current structure of the database software,
as described above, is shown in �gure 1.
The \Front End" provides interfaces for:

� interactive database queries;

� interactive database updates;

� tool invoked database queries; and

� tool invoked database updates.

2Supported by the Science and Engineering Research

Council and the Department of Trade and Industry

through the Teaching Company Scheme.

Improving a software development environment using

object-oriented technology

M.A. Firth

M.H. O'Docherty

R.E. Fields

S.K. Bechhofer

T.C. Nash

ICL Corporate Systems Division

Wenlock Way

West Gorton

Manchester M12 5DR

University of Manchester

Department of Computer Science

Oxford Road

Manchester M13 9PL

13 March 1992

Abstract

This paper summarises the work of a University of
Mancshester / ICL collaborative project, which is
charged with \introducing evolutionary enhance-
ments to ICL's development environment to bene-
�t productivity and time to market". This applies
in particular to the tools used to develop and sup-
port VME, ICL's mainframe operating system,
though it is our intention to make the work as
general as possible.
We describe the use of the Ei�el object-oriented

programming language as an interface to an exist-
ing database system, a design repository. We give
a brief overview of the history of the system to ex-
plain the reasons for adopting the new technology,
and discuss the expected bene�ts. We present the
reasons why we chose Ei�el as the vehicle rather
than any other language or a proprietary solution.

We discuss the bene�ts of holding implemen-
tation level information as nodes in a network
database instead of as discrete �les, and show how
the system will be evolved to support multiple
implementation languages by exploiting the new
object oriented interface.

1 INTRODUCTION

1.1 History

The current development environment is based on
a design repository called CADES1 which has its
origins in the late '60s / early '70s. It was de-
signed speci�cally to support the development of
the VME operating system for what was then the
`New Range' or 2900 series of mainframe comput-
ers.

At the lowest level CADES is a network
database. On top of this there is a layer known as
the back end, which provides con�guration man-
agement and a logical schema view. A further
layer, the front end, provides a textual update
and retrieval language. Currently this is the only

1Computer Aided Development and Evaluation System

1

