
Patching Syntax in OWL Ontologies

Sean Bechhofer1 and Raphael Volz2

1 University of Manchester, UK
http://www.cs.man.ac.uk

seanb@cs.man.ac.uk
2 Institute AIFB, University of Karlsruhe, Germany

http://www.aifb.uni-karlsruhe.de

rvo@aifb.uni-karlsruhe.de

Abstract. An analysis of OWL ontologies represented in RDF/XML
on the Web shows that a majority are OWL Full. In many cases this
may not be through a desire to use the expressivity provided by OWL
Full, but is rather due to syntactic errors or accidental misuse of the
vocabulary. We present a “rogues gallery” of common errors encountered,
and describe how robust parsers that attempt to cope with such errors
can be produced.

1 Introduction

In Feb 2004, the World Wide Web Consortium (W3C) announced the release
of the OWL Web Ontology Language Standard3. OWL is intended to provide
the “Ontology Layer” of the oft-cited Semantic Web stack and in order to fulfill
this, has an RDF carrier syntax [8] that will allow RDF-aware applications to
make use of data marked up in OWL.

The publication of the OWL Recommendation does not, of course, mean that
our work is done in terms of Ontology Languages. We must now support users
and application builders in the development of ontologies and applications that
use them. This is the rationale behind activities such as the Semantic Web Best
Practices Working Group4.

A key aspect of the OWL design is the layering of different language sub-
species. All OWL documents can be represented using the same RDF/XML
carrier concrete syntax, and OWL has three language variants with increasing
expressivity: Lite, DL and Full. All Lite documents are DL, and all DL docu-
ments are Full, but the converse is not true. The constraints on the expressivity
of OWL DL have been made in such a manner as to produce a language for
which there exists sound and complete decision procedures. The task of species
recognition – determining which particular species an ontology is in – thus be-
comes important, as an OWL DL application needs to know whether it can apply
the appropriate semantics and inference procedures to an ontology. See [2] for a
detailed discussion of the issues concerning parsing and recognition.
3 http://www.w3.org/News/2004##item14
4 http://www.w3.org/2001/sw/BestPractices/



The designers of OWL expect that a significant number of ontologies will
use the Lite and DL subspecies. However, in a simple analysis reported here,
we discover that the proportion of OWL Lite and DL ontologies currently on
the web is small. It appears, however, that the reasons for this are often due to
accidental syntactic errors or vocabulary misuse rather than modelling intention.
For example, the rules about OWL DL are strict in their requirements for explicit
typing of all classes used in the ontology. Such problems can be tackled through
provision of tools supporting the production of ontologies, which ensure that
correct and appropriate syntax is used.

As a parallel approach, we propose the use of robust parsers that can cope
with syntactic errors and apply “fixups” or patches (as initially discussed in [2])
wherever necessary5 in order to produce OWL DL ontologies. This approach
is predicated on the assumption that we are interested in working with OWL
DL ontologies – a hypothesis that we feel is valid (the number of implementors
building OWL DL and Lite reasoners6 bears witness to this).

The paper is structured as follows. Section 2 describes an experiment in
analysing a number of Web ontologies in order to determine which particular
species they fell into. Section 3 provides an analysis of the detailed reasons for
membership (or non-membership) of a particular species – these reasons can be
classified into a number of more general reasons (such as missing type triples)
providing us with a rogues gallery of the “usual suspects” or kinds of syntactic
malforms we may encounter that contribute towards non-membership of DL or
Lite. Section 4 describes possible patches that can be applied to these classes
of error in order to obtain OWL DL or Lite ontologies. Section 5 describes
extensions to an OWL parser that provides a more robust tool that will attempt
to cope with a number of different “error” conditions. We conclude with remarks
on related work and a summary of our contribution.

2 Ontology Sources

Our initial motivation was to answer the question “how much OWL is there on
the Web?” Of course, any RDF graph is, in fact, an OWL (Full) graph, but such
documents can not necessarily be used with tools targeted at OWL DL or Lite.
Thus, an alternative, and perhaps more interesting, question is “how much OWL
DL is there on the Web?”

2.1 Ontology library

Our first port of call was the largest library of ontologies in the Web - the
DAML ontology library7 - which contained 282 ontologies of various formats at
the time of our experiment. Of these 282 we selected those which we considered
5 Of course, as discussed in the paper, we must be careful when applying patches in

such situations as the semantics may be impacted.
6 http://www.w3.org/2001/sw/WebOnt/impls
7 http://daml.org/ontologies/



Collection Total Full DL Lite

DAML Library 76 63 (83%) 3 (4%) 10 (13%)

Google 201 174 (86%) 19 (10%) 8 (4%)
Table 1. Species Breakdown

to be candidates for OWL DL ontologies. Our heuristic to judge whether an
ontology is a candidate was based on usage of the OWL namespace. If an RDF
graph fails to mention the OWL namespace, we can be sure that it will not be
an OWL DL graph, as there can be no explicit typing as required by the OWL
DL rules8.

Unfortunately most of the ontologies in this library (193 ontologies) were
definitely not candidates as they were no longer available, had XML errors, or
used previous Web ontology languages such as OIL or DAML-ONT. Seventy-six
ontologies, however, were available, were valid XML, and used elements from the
OWL vocabulary.

2.2 Google

This small set of 76 ontologies was not considered satisfactory, so we chose to
expand our collection by searching for OWL ontologies using Google. A simple
search for OWL is of course too broad and leads to more than 4 million web pages,
most of which are not ontologies. Two refined searches for filetype:.owl owl
and filetype:.rdf owl provided 2649 more appropriate documents, of which
56 documents were suitable, e.g. they were HTML pages, and 15 documents
were no longer available online. In conclusion we actually found 201 candidate
ontologies. Obviously, these ontologies do not necessarily constitute all available
ontologies, since we missed those that departed from the syntactic search pattern
used or were not made publicly available10.

3 Analysis

A breakdown of the species distribution of the candidate ontologies from the
DAML Library and Google search is shown in Table 1. This initial analysis re-
veals that a majority of the ontologies found are not directly usable by OWL
DL or OWL Lite-aware systems. Our hypothesis, however, is that most of these
ontologies are not intentionally OWL Full, but become OWL Full through var-
ious errors made by the designer of the ontologies. We therefore had a closer
8 An exception to this, of course, is the trivially empty graph, relatively uninteresting

in this context.
9 The reader may note that the Google estimate displayed with the search results is

not correct.
10 For example ontologies held in repositories such as Sesame [4] will not necessarily be

apparent to Google unless the owners of the repository have taken steps to publish
information about them.



look at the 174 OWL Full ontologies found by Google and the 63 OWL Full
ontologies found in the DAML library11. We could identify 20 different reasons
why those ontologies were OWL Full (cf. Table 2). As discussed before, these
reasons are seen as errors for OWL DL and OWL Lite processors. The errors
can be aggregated into five more general categories of fault, which are described
below.

Note that here we are making an assumption that our desired intention is
that ontologies should be in the OWL DL or Lite subspecies. Thus we use the
term “error” to describe a situation where an ontology does not belong to DL
or Lite.

Missing typing: This category occurred most frequently and in almost all of
the OWL Full ontologies. A good example for missing typing is when a
property was not specified to be a datatype or object property. Missing
type information often occurred together for various types of elements, for
example in 154 (89%) of the OWL Full ontologies found by Google;

Namespace problems: Namespace problems occurred in about half of all full
ontologies, but more frequently in the ontologies from the DAML library.
Namespace problems are (i) a violation of the namespace separation man-
dated in OWL, (ii) usage of the OWL namespace itself (one may not declare
classes, properties or instances in the OWL namespace) and a (iii) redefini-
tion of elements of OWL itself, e.g. OWL class.

Wrong vocabulary: 32 (18%) of the OWL Full ontologies found by Google
were using the wrong vocabulary. But this was the second most frequent
(78%) error category for the DAML ontologies. Usage of the wrong vocab-
ulary, for example rdf:Class instead of owl:Class, rdf:Property instead
of owl:Property or usage of owl:sameAs on classes, can be accounted to
mistakes in legacy migration. With no exceptions all of the ontologies in this
category also had missing type information and namespace problems, which
are both direct results of using wrong vocabulary;

OWL Full: Around 20% of the ontologies in both data sets were definitely
OWL Full, since either (i) complex object properties were declared to be
transitive12 or (ii) illegal subproperty statements were made. The latter refers
to making a datatype property a subproperty of an object property or vice
versa13.

OWL/RDF Irregularities: 20 (11%) of the Google ontologies and 15 (24%)
of the DAML ontologies contained various OWL/RDF irregularities. This
refers to (i) Unused RDF Triples, (ii) Malformed Lists, (iii) Anonymous

11 More detailed results concerning the analysis can be found at: http://owl.man.ac.
uk/patching.

12 In order to ensure that OWL DL is decidable, there are extra side conditions on
the use of transitive properties. Complex properties are those that are functional,
are involved in cardinality restrictions, or have a complex inverse or superproperty.
Such properties cannot be declared to be transitive. See [8] for details.

13 With a single exception, the definitely Full ontologies found by Google also had also
namespace problems and were missing type information.



Class Creation, (iv) Structure Sharing and (v) Malformed Restrictions. With
no exceptions all of the ontologies in this category also had missing type
information and namespace problems, which comes at no surprise since these
errors are directly effected by the OWL/RDF irregularities.

Note that the categories are not disjoint – an ontology could have both miss-
ing type information and illegal sub property axioms. Note also that the sum-
mary figures (e.g. Missing Typing) summarise any of the subcategories referred
to, e.g. untyped class, untyped individual etc.

We can identify several other problems that could theoretically occur, but
were not found in the data set. These include particular RDF malforms such as
malformed descriptions or owl:AllDifferent axioms, the use of Inverse Func-
tional Data Properties [8], cycles in bnodes or owl:sameAs applied to Object or
Datatype Property.

Error DAML Library Google
Type Absolute Relative Absolute Relative

OWL Full (Total) 63 100% 174 100%

Missing Typing 63 100% 167 96%

Untyped Ontology 5 7% 24 13%
Untyped Object Property 34 53% 131 75%
Untyped Individual 37 58% 137 78%
Untyped Datatype 18 28% 10 5%
Untyped Data Property 18 28% 134 77%
Untyped Class 58 92% 148 85%
Untyped Functional Property 1 1% 4 2%

Namespace Problems 41 65% 76 43%

Redefinition of built in vocabulary 23 36% 50 28%
OWL Namespace Used 14 22% 35 20%
Namespace Separation Violated 33 52% 68 39%

Wrong Vocabulary 49 77% 32 18%

SameAs with Class 0 0% 2 1%
RDF Property Used 9 14% 27 15%
RDF Class Used 48 76% 23 13%

OWL Full 13 20% 31 17%

Illegal Sub Property 14 22% 28 16%
Complex role declared Transitive 1 1% 3 1%

OWL/RDF Irregularities 15 23% 20 11%

Unused Triples 12 19% 10 5%
Structure Sharing 0 0% 4 2%
Malformed Restriction 9 14% 2 1%
Malformed List 2 3% 8 4%
Anonymous Class Creation 3 4% 8 4%

Table 2. Frequent Error Types



4 Patching

Adopting the terminology as introduced in [2], errors can be classified into ex-
ternal and internal errors. Internal errors are those where the triples correspond
to an OWL ontology, but the ontology makes use of expressivity outside of the
required species. External errors are those where the RDF graph is in some way
incorrectly formed.

We can also identify a third class of syntactic errors to cover those situations
where there are problems with the underlying concrete presentation of the on-
tology – for example the XML concrete syntax is malformed. Such situations are
likely to be best dealt with by the underlying XML parsers – we do not devote
much attention to these here, and concentrate mainly on addressing external
errors such as missing type information. In addition, we would expect that as
more and more ontologies are produced by tools, malformed XML will become
a thing of the past. Similarly, if ontologies are held in RDF repositories (such as
Sesame [4]) we would hope to see less malformed XML as the repository takes
responsibility for the production of the concrete representation. Some internal
errors, in general those arising from imports, can be tackled, and we discuss
these here.

4.1 Missing Type Information

Fortunately the most frequent error of missing type information is also the most
easy to deal with. OWL DL requires that URI references used in particular
contexts (e.g. as a class) must be explicitly typed as such. This requirement for
complete information about the typing of resources is effectively a restriction on
the syntax. Contrast this with the semantics [8] of OWL, which applies an open
world assumption, allowing incomplete information.

As we have seen in the previous section almost all of the OWL Full on-
tologies tested failed to belong to OWL DL primarily because of such missing
information.

There are a number of situations that we can identify as Class Contexts –
those where a URI is expected to be an owl:Class. Such situations include:

– The subject or object of an rdfs:subClassOf triple.
– The object of an rdf:type triple.
– The object of an owl:someValuesFrom or owl:allValuesFrom triple where

the subject of the triple is also the subject of an owl:onProperty triple with
an owl:ObjectProperty as the object.

– The object of an rdf:domain triple.
– The object of an rdf:range triple where the subject is an owl:ObjectProperty.

In these cases, we can be fairly sure that the intention is that the URI is intended
to be an owl:Class and can add an appropriate rdf:type triple.

Similarly, we can identify Object Property Contexts, those where an owl:ObjectProperty
is expected. These include:



– The object of an owl:onProperty triple where the subject of the triple is
also the subject of an owl:someValuesFrom or owl:allValuesFrom triple
with an owl:Class as the object.

– The subject of an rdf:range triple where the object is an owl:Class.

Data Property Contexts encapsulate those situations where an owl:DatatypeProperty
is expected. These include:

– The object of an owl:onProperty triple where the subject of the triple is
also the subject of an owl:someValuesFrom or owl:allValuesFrom triple
with a Datatype14 as the object.

– The subject of an rdf:range triple where the object is a Datatype.

Note that the identification of owl:ObjectProperty and owl:DatatypeProperty
usage requires some analysis of the surrounding context.

These possible contexts may interact and it may be the case that it is not
possible to disambiguate. For example, consider the following fragment:

<rdf:Property rdf:about=’#p’>

<rdf:range rdf:resource=’#D’/>

</rdf:Property>

One possible patch here would be to consider p as an owl:ObjectProperty and D
as an owl:Class. An alternative would be to consider p as a owl:DatatypeProperty
and D as an rdfs:Datatype. Either would provide a valid OWL DL ontology.

Patching is, of course, not always possible (as the ontology may use expres-
siveness that results in an OWL Full ontology). In the following fragment:

<rdf:Description rdf:about="#a">

<rdf:type rdf:resource="#A"/>

</rdf:Description>

<rdf:Description rdf:about="#A">

<rdf:type rdf:resource="#B"/>

</rdf:Description>

There is no combination of type triples that we can add here to produce an
OWL DL ontology as there is an implicit use of classes as instances (and thus
a violation of the requirement for a separated vocabulary [8]) as A is both given
a type and used as a type. This example serves to illustrate that there may not
always be an appropriate patch that can be applied.

The order in which the contexts are addressed has an impact. For example, if
rdf:Property (rather than owl:ObjectProperty) has been used in an ontology,
analysing the use of the property in owl:someValuesFrom or owl:allValuesFrom
triples is likely to yield more information than, for example owl:cardinality
triples (which do not tell us anything about the characteristics of the property).
Thus the entire context of the ontology can prove useful in disambiguating such
situations.

Another “hard” case is where the intention is that a property is used for
annotation. Take the following ontology:
14 When we refer to Datatypes we mean either an rdfs:Datatype or a known XML

Schema Datatype.



<?xml version="1.0" encoding="ISO-8859-1"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://owl.man.ac.uk/ontologies/whatever"

xmlns="http://owl.man.ac.uk/ontologies/whatever#">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:about="#A"/>

<rdf:Description rdf:about="#A">

<author rdf:resource="http://www.cs.man.ac.uk/~seanb"/>

</rdf:Description>

</rdf:RDF>

In this example, A is explicitly declared to be an owl:Class. However, we have
no type for the property author. In this particular case, by choosing to type
author as an owl:AnnotationProperty we can produce an OWL DL ontology.
Choosing to type author as an owl:ObjectProperty would also require us to
treat http://www.cs.man.ac.uk/~seanb as an individual (and thus provide a
type), but would then push us into OWL Full due to the treatment of A as class
and instance. Thus in this case, to obtain an OWL DL ontology, we need to treat
author as an owl:AnnotationProperty.

In situations like this, it is unlikely that an automated approach will be
appropriate – we are in a situation where user input is needed in order to make
the ultimate decision as to how to resolve the problem. Tools can, however,
provide a degree of support in determining what needs to be done and suggest
appropriate course of action.

4.2 Import of OWL or RDF schemas

A common occurrence in OWL ontologies is the import of OWL or RDF schemas.
This is not necessary in order to produce OWL ontologies, and in fact will always
result in an OWL-Full (and not OWL-DL) ontology as the import of the schema
results in triples using terms from the disallowed vocabulary (see Section 4 of [8]
for details) as subjects in triples. Although it may be the case that importing
the OWL schema is sometimes required or intended – for example if we wish to
extend the OWL Schema itself – in the majority of cases this is unnecessary.

Resources in RDF namespace OWL does not completely forbid the use of
URIs from the RDF and RDF(S) namespaces. For example, rdf:Bag can be
used as a Class in an OWL DL ontology. Addition of type triples is, however,
necessary in certain situations in order to ensure that such RDF schemas are
OWL DL. For example, we need to say that rdf:Bag is being treated as an
owl:Class. Similarly, the RDF container properties rdf: 1, rdf: 2, etc. can be
used as properties, but must be typed appropriately.



4.3 Use of vocabularies without appropriate import

This also belongs to the category of missing type information, but is worth
special attention. A number of standard vocabularies are often used in ontologies
without the necessary definitions. For example, in the ontologies analysed, we
encounter Dublin Core properties such as dc:author or dc:title used without
import of the Dublin Core schema or explicit definition of the property. Even if
the schema at http://purl.org/dc/elements/1.1 is included, however, this
does not necessarily alleviate the position, as that particular schema is itself an
OWL Full document due to the use of rdf:Property rather than a more specific
OWL property. In general, we might expect a property from the Dublin Core to
be treated as an owl:AnnotationProperty.

4.4 Misuse of owl:sameAs

According to the OWL semantics [8], the owl:sameAs property should be used to
represent the fact that two individuals are the same. Using owl:sameAs to relate
two Classes is thus not the same thing as relating them using owl:equivalentClass
(the latter states that the classes are extensionally equivalent, e.g. have the same
members while the former asserts that the two classes are to be interpreted as
the same object). Using owl:sameAs to relate two Classes results in an OWL
Full ontology. The situation is similar with properties, although here we would
expect to see owl:equivalentProperty rather than owl:sameAs. It is likely that
in such situations, the modeller may have intended to use owl:equivalentClass
or owl:equivalentProperty rather than owl:sameAs.

4.5 xml:base and xmlns confusion

The use of xml:base and the default namespace xmlns often causes confusion
and can be the source of missing type information. The confusion arises due to
the fact that in an RDF/XML file, elements are resolved with respect to the
default namespace, whereas attribute values are resolved with respect to the
XML base [7]. If no xml:base attribute is explicitly set, then this is the URI
where the file is retrieved from. If xml:base is not set and the document is moved,
this can then cause problems as the URIs of the classes and properties declared in
the ontology may not match those used in the ontology. For example, assume the
following ontology is available at http://owl.man.ac.uk/ontologies/base:

<?xml version="1.0" encoding="ISO-8859-1"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns="http://owl.man.ac.uk/ontologies/base#">

<owl:Class rdf:about="#A"/>

<A rdf:about="#a"/>

</rdf:RDF>



<?xml version="1.0" encoding="ISO-8859-1"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://owl.man.ac.uk/ontologies/broken"

xmlns="http://owl.man.ac.uk/ontologies/broken#">

<owl:Ontology rdf:about=""/>

<!-- B should be a class -->

<owl:Class rdf:about="#A">

<rdfs:subClassOf rdf:resource="#B"/>

</owl:Class>

</rdf:RDF>

Fig. 1. Not OWL DL

This particular ontology will validate as OWL DL. If, however, we move the file
to http://owl.man.ac.uk/ontologies/base2 and then attempt to validate,
validation will fail as the owl:Class typing triple will now apply to the URL
http://owl.man.ac.uk/ontologies/base2#A. Use of an xml:base declaration
would alleviate this problem.

Unfortunately there is not much we can do in terms of applying patches
here. The resolution of URIs is, in general, dealt with by the XML parser and
the information regarding the base and default namespaces may not actually be
available to the RDF processing phase. However, it is worth mentioning here as
this is an issue that those publishing ontologies need to be aware of and sensitive
to.

5 Implementation

The OWL Validator [2] provided with the WonderWeb OWL API [3] checks the
species of OWL ontologies represented using RDF/XML. It does this through a
combination of syntactic checks on the structure of the triple graph, and further
checks on the expressiveness used in the ontology15.

The Validator reports any violations of the OWL DL/Lite rules encountered
during the parse – this information can then be used to try and provide patches
for such violations. The implementation of the Validator has been extended to
provide such a Patcher, applying the heuristics described in the paper in order
to try and obtain OWL DL ontologies.

15 The Validation and Patching services described in this paper are available at: http:
//owl.man.ac.uk/services.shtml



<?xml version="1.0" encoding="ISO-8859-1"?>

<rdf:RDF xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<owl:Ontology rdf:about="">

<owl:imports>

<owl:Ontology rdf:about="http://owl.man.ac.uk/ontologies/broken"/>

</owl:imports>

</owl:Ontology>

<owl:Class rdf:about="http://owl.man.ac.uk/ontologies/broken#B"/>

</rdf:RDF>

Fig. 2. OWL DL

5.1 Additions

A number of different approaches can be taken to producing “patches”. In the
case of errors of omission, such as missing type information, we can try and
provide a collection of triples that need to be added to the ontology in order to
provide OWL DL. We cannot always assume, however, that we have access to
the source of the ontology – indeed in most cases we will not as the ontologies
are referred to via URLs. In order to cope with this, we can produce a new
ontology which uses owl:imports to import the checked ontology and then adds
the necessary type triples. For example, say that at http://owl.man.ac.uk/
ontologies/broken we find the RDF shown in Figure 1. The results of the
patcher will be a new OWL ontology as shown in Figure 2.

Addition of extra triples can be considered to be a “safe” manipulation of the
graph. In this case, any entailments (in the RDF sense) that held will continue
to hold, due to the monotonicity of RDF entailment [6].

5.2 Deletions

For situations such those described in Sections 4.2 (the import of the OWL
schema), the change required to the ontology is effectively a deletion, e.g. remov-
ing the offending owl:import triple. Again, if the ontology source is not within
our control, removing such a triple is impossible. We can, however, instruct the
parser to ignore particular import statements when parsing. In contrast to the
addition of triples, after deletions, RDF entailments from the original graph may
no longer hold. We must be sure that this is not done silently – the ontology
obtained when we ignore an owl:import triple is not the same ontology as that
obtained when the triple is processed. Note, however, that in terms of entail-
ments that can be drawn using OWL DL semantics, the question is moot, as the
original graph is not OWL DL, and thus cannot have the OWL DL semantics
applied to it.



<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www.daml.org/tools/tools-ont#">

<Project rdf:ID="DAML">

<name>DAML</name>

</Project>

<Tool rdf:ID="SiRPAC">

<name>Simple RDF Parser And Compiler (SiRPAC)</name>

<description>RDF parser, from W3C</description>

<site>http://www.w3.org/RDF/Implementations/SiRPAC/</site>

<category>RDF Parser</category>

</Tool>

<Tool rdf:ID="SiLRI">

<name>Simple Logic-based RDF Interpreter (SiLRI)</name>

<description>a main-memory logic-based inference engine</description>

<site>http://www.ontoprise.de/download/</site>

<uses rdf:resource="#SiRPAC"/>

<category>Inference Engine</category>

</Tool>

...

</rdf:RDF>

Fig. 3. DAML Tools Ontology (fragment)

Similarly, for vocabulary misuse such as the owl:sameAs problem described
in Section 4.4 we can tell the parser to treat owl:sameAs triples as if they were
owl:equivalentClass or owl:equivalentProperty as appropriate (depending
on context).

Once the processor has identified all the possible patches it can apply, it
attempts to revalidate the ontology in the light of those patches and reports its
findings.

The outcome of the process is thus a combination of things:

– A report on the errors encountered during the parse/validation.
– A collection of type triples that need to be added to the ontology.
– Identification of imports that cause problems (such as the OWL Schema).

As an example of this process, the DAML pages provide an ontology of
tools at http://www.daml.org/tools/tools.owl. This is a vanilla RDF (and
thus OWL Full) file that does not validate as OWL DL due to the presence
of a number of untyped properties and classes. A fragment of the source is
shown in Figure 3. In this case, an analysis of the RDF suggests that Tool is
intended to be an owl:Class, properties such as name and site are instances
of DatatypeProperty, and uses is an owl:ObjectProperty. After adding these
triples to the ontology (using the owl:imports mechanism as described above),
we find that the resulting graph does indeed validate as OWL DL.



Collection Attempted Patched by Type
Triples

Patched by
Schema Handling

DAML Library 50 16 (32%) 1 (2%)

Google Search 140 78 (56%) 2 (1%)
Table 3. Results of Patching Non-DL Ontologies

5.3 Results

The ontologies analysed in the initial experiment were run through the Patcher
in order to see whether OWL DL ontologies could be produced. Results are
summarised in Table 3. Of the 63 candidates from the DAML Library, 13 were
definitely OWL Full due to the expressiveness used (for example subproperty
axioms were asserted between Object and Datatype Properties), leaving 50 po-
tentially available for patching. Of the ontologies gathered using Google, 31 were
definitely OWL Full, leaving 140 potentially available for patching.

6 Related Work

Approaches to parsing OWL in RDF are described in [2, 1]. The application
described here extends the approach of trying to construct an abstract syntax
tree representing the OWL ontology. In contrast, the Jena recognizer attempts
to classify nodes according to their occurrence within the RDF graph. The graph
validates as a particular species if the classification of the nodes meets certain
conditions. This approach may well also be amenable to patching as described
here as the node categories provide pointers to the expected types of the nodes.

BBN’s OWL Validator16 is a tool to “...check OWL markup for problems
beyond simple syntax errors...”. It is able to spot some missing type errors, but
does not (as yet) supply detailed information on how these errors could or should
be addressed.

7 Conclusion

The widespread use of ontology languages like OWL is at a rather early stage,
and a number of the “rough edges” still need to be smoothed out. Providing
tools that support the production of ontologies that conform to the rules and
conditions relating to OWL sublanguages is, we feel, a useful step in the right
direction. This paper can be seen as complementary to Appendix E of the OWL
Reference [5] and the Working Group Note on Parsing [1]. The former provides
“Rules of Thumb” to ensure that ontologies are in OWL Lite or DL, while the
latter describes how to parse OWL ontologies in RDF/XML. This work describes
how, in some sense, one might retrospectively apply the Rules of Thumb to
existing ontologies.
16 http://owl.bbn.com/validator/



Our results are encouraging. As we see in Section 5, over half of the searched
ontologies that were originally found to be OWL Full can in fact be “retrofitted”
to the OWL DL requirements through the addition of the missing type triples
or judicious handling of imports. For those in the DAML Library, we were able
to handle around a third. The solutions we describe here are admittedly rather
simple – the latter example in Section 4.1 gives a glimpse of the complex depen-
dencies that may arise from missing types and we do not (as yet) offer automated
solutions to such problems. However the results reported show that even with
simple approaches, we are able to handle a significant number of ontologies.

A key message here is that care should be taken when applying such heuristics
– the underlying semantics of the ontology are being changed (see Sections 5.1
and 5.2), and tools must ensure that users are aware of the fact that this is hap-
pening. We are not advocating that applications should feel free to arbitrarily
rewrite ontologies they find on the web – this is likely to compromise interoper-
ability. Rather, the procedures we describe here can form a first cut in a process
of “cleaning up” information on the Web.

An analogy can be made with HTML processors. A significant proportion of
HTML pages which are available on the web do not, in fact, conform to schema
such as the XHTML standard. It is often the case that, for example, closing tags
are missing. HTML parsers such as those found in browsers have been carefully
honed to try and deal with these situations. Indeed, it is unlikely that the web
would have met with the success it has if browsers were not able to handle
poorly structured documents. We should be careful not to stretch this analogy
too far, however. In general, HTML pages are targeted at a human interpreter
– humans are fairly robust in terms of their ability to deal with incomplete or
dirty information. Software agents are a different matter, and care must be taken
when applying patching heuristics to ensure that the end user is aware that such
an approach is being taken. In addition, even with what seems to be “broken”
or dirty information, it may be the case that the original syntactic presentation
is exactly what was intended.

Support for the migration from vanilla RDF to OWL is also of interest here.
As discussed in the introduction, the number of OWL DL/Lite ontologies cur-
rently on the web is small. Indeed the number of ontologies that even use the
OWL vocabulary is small – many more schemas are currently represented using
RDF. It would be useful if such schemas could be made accessible to OWL pro-
cessors whenever possible. Again, we surmise that in a large proportion of the
RDF schemas available on the web, the schemas are not inherently OWL Full
due to the expressivity used, but are rather OWL Full because they do not meet
the syntactic restrictions imposed by OWL DL. Translating these to valid OWL
DL ontologies is not, as we have seen, simply a case of replacing vocabulary.
However, with the application of appropriate heuristics, we can move towards
the support of automatic migration of RDF vocabularies to OWL DL and Lite.

Another issue that we touch on here, but do not examine in much depth
is that of the provision of ontology libraries. The success of the Semantic Web
relies, in part, on the provision of ontologies and the sharing of those ontolo-



gies. Not only must we author the ontologies, but they must also be published
and made available to applications. The initial analysis reported here used a
somewhat crude mechanism (searching Google) in order to find OWL ontolo-
gies. There are a small number of ontology libraries on the web (for example the
DAML ontology library17 which is probably the largest) but these are not partic-
ularly comprehensive, and in the main are rather lightweight18. For example, our
experience of encountering Dublin Core properties in OWL ontologies suggests
that an available OWL DL or Lite schema for the Dublin Core properties19 is
likely to be a useful resource.

In conclusion, although the initial answer to the question “how much OWL
DL is there on the Web?” is “not much”, with the provision of some quite simple
tool support, we believe we can increase this to at least “a little bit”.

Acknowledgments This work was supported by the WonderWeb project (EU
grant IST-2001-33052). Sean Bechhofer would like to thank Peter Patel-Schneider
and Jeremy Carroll for their invaluable assistance in deciphering the minutiae
of OWL syntax.

References

1. Sean Bechhofer. OWL Web Ontology Language Parsing OWL in RDF/XML. W3C
Working Group Note, World Wide Web Consortium, January 2004. http://www.

w3.org/TR/owl-parsing.
2. Sean Bechhofer and Jeremy J. Carroll. Parsing OWL DL: Trees or Triples? In

Proceedings of World Wide Web Conference, WWW2004. ACM Press, May 2004.
3. Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the Semantic Web with

the OWL API. In 2nd International Semantic Web Conference, ISWC, volume
2870 of Lecture Notes in Computer Science, Sanibel Island, Florida, October 2003.
Springer.

4. Jeen Broekstra, Arjohn Kampman, and F. van Harmelen. Sesame: A Generic Archi-
tecture for Storing and Querying RDF. In Ian Horrocks and James Hendler, editors,
Proceedings of the International Semantic Web Conference, ISWC2002, volume 2342
of Lecture Notes in Computer Science, pages 54–68. Springer-Verlag, June 2002.

5. Mike Dean and Guus Schreiber. OWL Web Ontology Language Reference. W3C
Recommendation, World Wide Web Consortium, 2004. http://www.w3.org/TR/

owl-ref/.
6. P. Hayes. RDF Semantics. W3C Recommendation, World Wide Web Consortium,

2004. http://www.w3.org/TR/rdf-mt/.
7. Jonathan Marsh. XML Base. W3C Recommendation, World Wide Web Consor-

tium, 2004. http://www.w3.org/TR/xmlbase/.
8. P. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Ab-

stract Syntax and Semantics. W3C Recommendation, World Wide Web Consor-
tium, 2004. http://www.w3.org/TR/owl-semantics/.

17 http://www.daml.org/ontologies
18 By lightweight here we mean ontologies that do not extend much beyond the ex-

pressivity supported by RDF Schema.
19 http://www.aifb.uni-karlsruhe.de/WBS/rvo/ontologies/dublincore.owl


