Using a Description Logic to Drive Query Interfaces

Sean Bechhofer and Carole Goble
Department of Computer Science
University of Manchester
Oxford Road
Manchester M13 9PL
seanb@cs.man.ac.uk
http://www.cs.man.ac.uk/mig/people/seanb

1 Introduction

Description Logics have long been advocated as a suit-
able framework for partially structured data. A con-
ceptual model can provide a space within which a user
can navigate when constructing queries. In particular,
the hierarchical compositional models provided by a De-
scription Logic have the potential to support complex
incremental manipulations of query expressions.

However, interacting with a Description Logic is not
always easy. Systems generally use textual interfaces,
where the user requires not only an understanding of the
underlying representation but also its particular concrete
syntax. We present some ideas on the use of a Descrip-
tion Logic with the addition of sanctions to drive graph-
ical user interfaces facilitating the construction and ma-
nipulation of queries. This use of sanctions allows the
constrained formulation of queries through a dialogue,
with the interface providing feedback relating to both
the schema and contents of the database.

We have two current prototypes. The first, developed
as part of the TAMBIS project [Tam], allows molecu-
lar biologists to construct queries over concepts in biol-
ogy. These description logic queries are then rewritten to
database queries directed to various information sources.
The second uses a small demonstration database of peo-
ple and documents, and provides additional feedback
about query results.

2 The GRAIL Description Logic

GRAIL[RBG™97] is a Description Logic developed by the
Medical Informatics Group at Manchester University. It
has a restricted set of concept formation operators and
the addition of a mechanism for constraining the con-
struction of composite concepts, known as sanctioning.
Sanctioning plays a major part in the process which
drives the construction of interfaces.

Sanctioning has two levels. So-called grammatical
sanctions represent general relationships, while sensible
sanctions represent those that can really be formed. To
use a medical example, we may say that in general, Con-

ditions occur in BodyParts. This is not to say that every
condition can occur in every body part, but it is useful
to be able to express the abstraction. At a more specific
level we can now say that Fractures occur in Bones, allow-
ing the formation of a fracture of a bone, but avoiding
misnomers such as fracture of the eyebrow. Composi-
tions which are only sanctioned at the grammatical level
cannot be instantiated.

Sanctions are inherited down the subsumption hierar-
chy, and a grammatical sanction must be in place before
a sensible sanction can be asserted.

GRAIL is implemented as a Terminology Server
[BGA197], providing access to a range of terminologi-
cal services and operations. This separation of the core
terminological services provides a clean split between
the underlying representation and the client applications
(such as the interfaces described here) which use it.

3 Data Entry and Query

Much work has been done on the use of GRAIL models
to drive data entry interfaces. This work began with
PEN & PAD, has evolved from experiments with user
interface requirements and now forms part of the lat-
est version of a major computer package for General
Practioners[Kir95].

However, such work has focused primarily on data en-
try rather than query formulation. The data forms are
driven by the sensible sanctions in the model, ensuring
that the options available for input correspond to com-
positions that exist.

When we consider query, however, the more abstract
concepts permitted due to the grammatical sanctions are
important. Although the concept Condition occuring in a
BodyPart is abstract in the sense that it is never directly
instantiated, and is thus too general for use in a data
entry context, it does form the basis of a valid query, as
it subsumes concepts (such as Fracture occuring in Femur)
which are instantiated.

The issue here is that the two questions:

¢ What can I say about a concept X?

e What can I ask about a concept X?

are different. The first question is concerned with the
specializations which can actually be built, while the sec-
ond question needs to be answered at a more abstract
level, allowing the use of more general compositions.

3.1 Reasonable Sanctions

In addition to the requirement that queries can be
formed at a higher level, we also wish to restrict the
user from forming queries that will never be fulfilled.

Consider the case where we have a concept Person with
subclasses Student Teacher and Layabout. Person is sanc-
tioned to have the property earns Wage at the grammati-
cal level, representing the fact that in general, person can
earn wages. We can now assert sensible sanctions that
Student earns Wage and Teacher earns Wage. If query
was based solely on grammatical sanctioning, we could
now ask the query Layabout which earns Wage, which —
due to the lack of sensible sanctions — we know can have
no instantiations. If query was based solely on sensible
sanctions, we would be unable to form the general level
query Person which earns Wage — a useful query.

This suggests that options for composition should be
based on a combination of the two levels of sanction —if a
composition is sanctioned at the grammatical level, but
has no sensible sanctions below it allowing instantiation,
the composition should not be offered as an option. This
leads to the definition of reasonable sanctions, where a
concept is reasonably sanctioned if there are sufficient
sanctions in place to allow the existence of an instantion
of it.

Reasonable sanctions differ from grammatical and sen-
sible sanctions in two ways:

1. They are derived or inferred from the information
present in the model

2. They are not inherited. In the discussion above,
although earns Wage is reasonable for Person, it is
not reasonable for Loafer.

Note also that reasonable sanctions are not part of the
GRAIL language, but are a device placed on top of the
language and used by applications.

4 Query Manipulation

Once an initial query has been formed, there are a variety
of manipulations or reformulations we can perform on
the query.

Specialization. Further criteria can be added to the
description applied to the topic of the query. For ex-
ample, a request for articles about politicians, could
be specialized to a request for articles appearing
in newspapers about politicians. Alternatively, the
topic could be replaced by a more specific subclass;

Generalization. Queries can be relaxed by the removal
of criteria or the replacement of the topic. For ex-
ample we could move from a request for articles ap-
pearing in newspapers about sportsmen to articles
about sportsmen;

As well as the global manipulations described above,
we can perform local operations, where the values of cri-
teria can be themselves specialized or generalized. When
manipulating subexpressions, a further option becomes
available:

Subquery Replacement. We may wish to allow re-
placement of subqueries with sibling concepts, say
moving from articles about politicians to articles
about sportsmen.

All these manipulations and replacements can be con-
trolled by sanctioning, restricting the options presented
for specialization/replacement, and ensuring that only
reasonable queries are built.

[e
L SSS———EEEEE—————————————————————

(

| —

tap thing

[]
donnair
cocument
clip
clocument®
document about persan

|

Hits | 47 subrnit

clip about person

_ navigate |3pecia]ize| dismantlel kinds of t:u:u:ut;r]"uér‘l:'

Figure 1: Initial Query

Figures 1, 2, 3 and 4 illustrate a sequence of manip-
ulations performed while building up a query. The first
shows a query asking for documents which were broad-
cast (i.e. were taken from TV or radio) and which de-
scribe a person. The second screen shows available op-
tions for specializing the kind of person — here we have
chosen male politicians, leading to the query shown in
the third screen. Finally, we show options available for
replacing the source sub-query with a more specific child
or sibling. The replacement screen only shows those con-
cepts “next” to the focus. In this way the user navigates

]

Field

Al art
[politics
sport
>

nationality

| purapean
narth ametican
other nationality
>|

1k

ﬂfema]e
~l

=]

_ cancel

Figure 2: Specialization Options

through the model incrementally.

The interface shows the query broken down into its
constituent parts, along with a natural language expres-
sion corresponding to the entire expression. A hierarchi-
cal view showing the position of the concept is also pro-
vided. In addition, the tool shows the number of “hits”
found for the current query. Note that this example uses
an instance space — the TAMBIS prototype relies only
on concept space.

Operations such as replacement or specialization are
currently focussed around the concepts involved in a
query. GRAIL supports attribute hierarchies which
might also be used in such manipulations. For exam-
ple, we may wish to be able to generalise from a query
about articles about politicians to articles connected with
politicians, where the notion of connected subsumes the
relationships of being the subject and the author.

5 Discussion

The approach described here provides powerful opera-
tions for the construction and manipulation of Descrip-
tion Logic expressions. Initial reaction from the users
of our prototypes — molecular biologists with no expe-
rience of Description Logics — has been positive, and a
formal evaluation of the interface will take place in the
near future. However, there are still many areas in need
of exploration.

An important aspect of dynamic query is the provi-
sion of feedback informing the user of the progress of the
query and guiding toward the possible actions which can
be performed. This can be separated into two levels. At
the data level, the emphasis is on feedback concerning
the answering of the query — in the example above, this
feedback is of a primitive nature, simply providing the
user with a count of the number of instances to be re-

describes m

>

1] top thing
domain
docurment
clipp

docurmnent®
clocument about person
i n

Hits | 17 subarmnit

clip about male politician

_ ravigate |3pecia]ize| dismantlel kinds of t:u

Figure 3: Specialized Query

turned. Such an approach has been used with traditional
databases [EFP94]. The IMACS project [BST193] used
a CLASSIC knowledge base to support data mining and
knowledge discovery, providing more sophisticated feed-
back.

Alternatively, we can provide feedback at a meta or
schema level, constraining and guiding the user based
on knowledge about the information model — for exam-
ple offering suitable options for specialization of a query,
while preventing the formation of queries about vegeta-
bles which have a political allegiance.

The sanctions described in this paper allow us to ap-
ply this schema level feedback, while the description logic
allows us to provide data level feedback, using the clas-
sification of the instance space.

Sanctions can be seen to provide domain and range re-
strictions for relations, with the domain and range being
defined by the disjunction of the sanctioning statements.
By defining a broad and narrow domain and range for
each role, we can provide more control and different con-
straints for different applications. The definition of a
clear semantics for sanctioning is currently being inves-
tigated — [Sch96] describes a model theoretic semantics
for sanctions.

The feedback provided sits well with the four maxims
of Grice [Gri78]. The maxim of Relevance states that
the interface should provide relevant contributions, while
that of Quantity states that contributions should be as
informative as is required for the current purposes of the
exchange and should not be more informative than is re-

K3

>

_ cancel

Figure 4: Replacement Options

quired. By restricting, for example, replacement options,
the interface does not deluge the user with spurious op-
tions when offering alternatives.

Another common technique used for database query is
that of Query-by-Example [Z1o75], or retrieval by instan-
tiation [TWF182], where a particular instance is pre-
sented as a representative of a class of instances which
the user is interested in. In a traditional form-based ap-
proach, the properties of the example would be used to
fill in the particular values of the form. By using the
described instances of a description logic, we can offer
a more powerful form of query by example, where the
description applied to the instance can be used as the
starting point for a query. In a sense, the description
applied to the instance provides not only the values in-
stantiating form, but also the structure of the form itself.

In tandem with the construction and manipulation
of expressions, there are activities involving navigation
around the conceptual model and navigation of the con-
cept space. In addition to the manipulations described
above, users may wish to “jump” to different areas of
the model. In particular, entry points need to be pro-
vided. These may either be pre-defined, user-defined
“bookmarks” can be supported, or a query-by-example
approach can be used to gain access to starting points
from which to explore.

The interaction of the reasonable sanctions along with
manipulation operations poses some interesting prob-
lems. When subqueries are replaced, other parts of a
query may go out of scope or become unsanctioned.
Techniques are required to manage this interaction and
report to the user when manipulation has side effects.

In some situations, the conceptual model may have
been constructed for purposes other than driving query.
In addition, users may have no experience or interest in

the underlying representation. If the ontology is very
deep or broad, in order to comply with the maxim of
Quantity, there might be extra levels of abstraction or
detail which we wish to hide from the end user. Such
situations will vary depending on the application area.
Annotation of the model with application specific meta-
data may help hide these abstractions and implementa-
tion details from the users’ view of the model.

Our current prototype contains a naive implementa-
tion of instances — with a large space of instances, com-
pleteness may be difficult to achieve. Can we employ a
controlled amount of incompleteness in order to provide
a useable system which supports aspects of both data
and schema level feedback?

In summary, we feel that more intuitive methods of
interacting with Description Logic systems are required.
The ideas presented in this paper can go some way
towards achieving this, but further investigation is re-
quired into:

e schema, level user feedback during query construc-
tion, based on sanctioning information;

¢ data level feedback based on terminological reason-
ing and the completeness of that reasoning;

¢ the use of exemplars and query by example;

e annotation of models with metadata to aid in ap-
plication specific tailoring,.

References

[BGA197] S.K Bechhofer, C.A. Goble, Rector A.L.,
W.D. Solomon, and W.A. Nowlan. Termi-
nologies and Terminology Servers for Infor-
mation Environments. In to appear in: Pro-
ceedings of STEP ’97 Software Technology
and Engineering Practice, 1997.

R.J. Brachman, P.G. Selfridge, L.G. Ter-
veen, B. Altman, A. Borgida, F. Halper,
T. Kirk, A. Lazar, D.L. McGuinness, and
L.A. Renick. Integrated Support for Data
Archaeology. International Journal of Ap-
plied and Cooperative Information Systems,
2(2):159-185, 1993.

G.P. Ellis, J.E. Finlay, and A.S. Pollitt. HI-
BROWSE for Hotels: Bridging the Gap Be-
tween User and System Views of a Database.
In P. Sawyer, editor, Proceedings of IDS 2.
Springer-Verlag, 1994.

H. P. Grice. Logic and conversation.
In P. Cole, editor, Syntax and Semantics
9:Pragmatics. Academic Press, 1978.

J. Kirby. PEN & PAD: The Next Gener-
ation. In Primary Health Care Specialist
Group, Cambridge, UK, 1995.

[BST+93]

[EFP94]

[Gri78]

[Kir95)

[RBG+97]

[Sch96]

[Tam]

[TWF+82]

[Z1075]

A. L. Rector, S. K. Bechhofer, C. A. Goble,
I. Horrocks, W. A. Nowlan, and W. D.
Solomon. The GRAIL Concept Modelling
Language for Medical Terminology. Artificial
Intelligence in Medicine, (9):139-171, 1997.

Dominik Schoop. Integrating qualitative
spatial knowledge representation with de-
scription logics in order to reason about hu-
man anatomy. Continuation report, Univer-
sity of Manchester, Department of Computer
Science, 1996.

Tambis Project. WWW Home Page. http:

//www.cs.man.ac.uk/mig/tambis.

Frederich N. Tou, Michael D. Williams,
Richard Fikes, Austin Henderson, and
Thomas Malone. RABBIT: An Intelligent
Database Assistant. In Proceedings of AAAI-
82, pages 314-318, 1982.

M. M. Zloof. Query-by-Example. In Proceed-
ings of the National Computer Conference,
pages 431-438, Montvale, NJ, 1975. AFIPS
Press.

