
Driving User Interfaces from FaCT

Sean Bechhofer and Ian Horrocks
Department of Computer Science

University of Manchester, UK
Email: fseanb, horrocksg@cs.man.ac.uk

Abstract

We describe a mechanism that can be used to drive interfaces from a descrip-
tion logic (DL) model of the domain. A simple layer with limited expressivity
sits on top of the DL, with the interface behaviour described using a collection
of application specific assertions. DL reasoning is then employed to ensure that
the choices offered to the user in expression construction are “reasonable” as
well as valid.

1 Introduction

An approach for driving user interfaces from a Description Logic (DL) model of the
domain is described in [2, 4]. This uses a mechanism called sanctioning, which is an
integral part of GRAIL DL implementation [6]. As well as user interface generation,
the GRAIL sanctioning mechanism has been used for a range of other purposes, in
particular as an aid to knowledge modellers.

Although suited to a number of applications, GRAIL provides a limited expres-
siveness and uses structural subsumption algorithms which are known to be incom-
plete. In addition, the multiple roles played by sanctions sometimes caused conflict
and confusion and led to compromise in the conceptual modelling. However, the abil-
ity to drive an interface which allows users to construct expressions without having to
explicitly deal with the underlying DL syntax has proved indispensable, particularly
in the context of projects such as TAMBIS [1].

In this paper, we describe a sanctioning-like mechanism which can be used with
a more expressive logic. The sanctions are no longer part of the underlying logic,
but are implemented in a separate layer that makes use of the reasoning services
provided by the underlying DL. This architecture provides a cleaner separation of
application-specific information and functionality from the logical reasoning of the
DL. The separation also makes it clear exactly what the sanctions are for, allows a



clearer specification of how the interfaces should behave, and makes explicit the role
of the DL reasoner in the interface generation.

The mechanism described here is not intended to be equivalent to sanctioning as
it was defined in GRAIL, but is a (more flexible) substitute for sanctioning in user in-
terface applications. To avoid confusion we will call the mechanism reasonableness.

2 Interfaces

A DL model of a domain can be used to drive an interface which allows a user to
form a (possibly new) description by navigating through the hierarchy to an existing
concept, and then (optionally) specialising that concept. For example, the TAMBIS
system [1] allows the user to phrase DB queries using a DL model of bioinformatics.
The query (a DL concept) is formed by navigating the model to find a concept that
nearly expresses the query and then (optionally) further specialising this concept by
conjoining new existential restrictions (concepts of the form 9R:C). The query is
then rewritten to appropriate queries over distributed information sources. The query
interface relies on users being able to construct concept expressions using a graphical
interface that helps to insulate the naive user from the underlying representation.

Such an interface can be constructed by exploiting a mechanism which is able to
answer the question “what might I want to say about this concept?”; the answer to
this question can then be used to present possible specialisation options to the user.
For example, in a model concerned with costume and clothing, we may know that,
in general, items of clothing are worn on parts of the body, and we may therefore
wish to prompt the user as to which part of the body an item is worn on. However,
it may not be the case that all items are worn on a part of the body, or that items
can only be worn on parts of the body, in which case we would not wish to include
such restrictions in the model. Using reasonableness, we can capture the fact that, in
general, it is reasonable to form new concepts by specialising items of clothing with
information about the part of the body where they are worn.

3 Reasonableness

The basic purpose of reasonableness is to restrict the way in which (naive) users can
form new concepts so that:

1. only “reasonable” concepts can be formed, and

2. only a “reasonable” number of specialisation choices are offered at any point.

In GRAIL, the sanctioning mechanism is used to restrict the possible specialisation
choices to “sensible” existential restrictions. The notion of sensibleness is defined by



sanctions and is inherited down the concept hierarchy. For example, the existen-
tial restriction 9worn-on:body-part may be sanctioned for the concept garment,
meaning that it is sensible to form new concepts by conjoining (sub-concepts of)
9worn-on:body-part with (sub-concepts of) garment. In GRAIL, the expressive-
ness of the sanctioning mechanism more or less corresponds with the expressiveness
provided by the underlying language, but there is no particular reason why this should
be the case.

3.1 Restricted Concept Language

In contrast to GRAIL sanctions, the reasonableness mechanism uses two different con-
cept languages. The complete language will be available to sophisticated users (for
example knowledge engineers) when designing the concept hierarchy.1 A simpler
(subset) language will be available to naive users when navigating the hierarchy and
forming new queries/concept descriptions. Reasonableness applies to this restricted
language, and guides and restricts the way that naive users can form composite con-
cepts. In our initial implementation, this restricted query language consists only of
conjunction and existential restriction (a concept of the form 9R:C).

In order to further restrict the way in which the query language can be used,
only concepts that are “reasonable” can be formed. This is imposed by having, for
each concept name C in the Knowledge Base (KB), a list of those concepts that may
reasonably be conjoined with C. The reasonableness mechanism is not part of the un-
derlying DL (FaCT in this case), but uses the concept hierarchy as a “hanger” for rea-
sonableness information and the DL’s reasoning services to maintain this information
(the reasonableness layer is a client of the CORBA-FaCT server [3]). Reasonable-
ness information consists of a set R of assertions of the form reasonable(C;D)
or reasonable(C; 9R:D), where C and D are concept names occurring in the KB
and R is a role name occurring in the KB. A concept C 0 uD0 is said to be reasonable
iff there is an assertion reasonable(C;D) 2 R such that C 0 v C and D0 v D.

In order to restrict the number of possible ways in which an interface might
prompt a user to specialise a concept C, we will define the minimal non-redundant
setRC of concepts that might reasonably be conjoined with C, such that D 2 RC iff:

1. C uD is reasonable,

2. C uD is satisfiable (i.e., C uD 6v ?),

3. C uD is not equivalent to C (i.e., C 6v C uD) and

4. D is not tautological (i.e., D is not subsumed by some other D 0 2 RC .

These sets can be pre-calculated for concepts in the hierarchy, but must be calculated
on the fly for new concepts created by the application.

1In the current implementation, this language is SHIQ [5].



Note that, while a restricted language is being used in query formulation, the full
power of the underlying logic is available to knowledge engineers when constructing
the knowledge base. One could envisage further “layers” of expressivity that could
be supplied, depending on the sophistication of the users. Moreover, although reason-
ableness guides the specialisation and query construction process, but is not intended
to be a hard and fast restriction on the expressive power of the query language—
experienced users may be able to “break out” of the interface in order to use some or
all of the richer expressive power of the underlying DL.

4 Comparison with GRAIL

It is useful to compare and contrast the functionality of Reasonableness with that
provided by GRAIL’s sanctioning.

� Reasonableness has the advantage that it supports conjunction with other named
concepts, not just existential restrictions (GRAIL attribute-value pairs), and ex-
tending the mechanism to deal with other deterministic constructs (e.g., num-
ber restrictions) does not appear difficult. Moreover, as reasonableness does
not have any semantic significance w.r.t. the underlying DL, it would be easy
to allow more sophisticated users to override the restrictions it imposes.

� Reasonableness interacts in a natural way with value restrictions (8R:C con-
cepts) in the KB, potentially reducing the number of choices offered as concepts
become highly specialised and more value restrictions apply. This also allows
“reasonable” assertions to be cancelled in a clean way (but not then re-applied,
as is possible in GRAIL).

� As described above, reasonableness has no built in mechanism for guiding the
knowledge engineer, such as GRAIL’s grammatical sanctioning—reasonableness
assertions can be added as and where the knowledge engineer likes. However,
it would be easy to add authoring extensions that warned of unsatisfiable, non-
specialising or tautological assertions.

5 Prototype Implementation

A prototype of the reasonableness layer has been implemented, and is being in-
cluded in the latest release of the TAMBIS system (which now uses FaCT rather than
GRAIL). The prototype provides a layer that sits between the CORBA-FaCT server
and the application as shown in Figure 1. The application can, of course, still com-
municate directly with the server.

In the TAMBIS application, all the reasonableness assertions must be of the form
reasonable(C; 9R:D) (i.e., there are no assertions reasonable(C;D) where



Application

CORBA-FaCT

API

Reasonable
Statements

Reasonable
Layer

Figure 1: Architecture

D is not an existential restriction). The reasonableness information is used by the
interface in order to generate data entry forms which allow specialisation of a query
concept by offering relevant role-concept pairs as possible additional existential re-
strictions (see [2] for further details). This represents a slight restriction w.r.t. the
language supported by the reasonableness mechanism, as the user can only generate
“frame-concepts” of the form Cu9R1:D1u9R2:D2u: : :u9Rn:Dn, where C is a con-
cept name and each of the D1; : : : ; Dn are, in turn, “frame-concepts”. However, the
result is a simple “framelike” language that corresponds almost directly with the form
of GRAIL expressions, thereby allowing us to reuse our original graphical interface.2

In addition, the prototype allows the specification of a concept as “invisible”,
which prevents it appearing directly on a form—its direct sub-concepts will appear
instead. This is simply “syntactic sugar”, allowing us to reduce the number of rea-
sonableness assertions by applying them at a more general level.

5.1 An Example

As an illustration of reasonableness in action, consider a simple model of costume.
We have items of clothing (e.g., shirts, hats, boots and so on), along with parts of the
body that these things can be worn on (e.g., leg, arm) and purposes to which they
can be put (e.g., decoration, protection, support). In addition, we have regions of
the body such as above or below the waist. Axioms are used to assert facts about
articles (e.g., Hat v 9wornOn:Head), to define how parts of the body relate to

2There is no theoretical reason for not extending the interface to support (at least) the full expressive
power of the reasonableness mechanism, but providing efficient graphical renderings for arbitrary
conjunctions (or further expressivity) is an issue that needs further investigation.



regions (e.g., Head v 9partOf:AboveWaist) and to add general knowledge about
the domain (e.g., 9wornOn:Head v 9worn:AboveWaist).3 We can now add the
following reasonableness assertions:

reasonable(Item; 9wornOn:BodyPart)
reasonable(Item; 9worn:BodyRegion)
reasonable(Item; 9hasPurpose:Purpose)

invisible(BodyPart)
invisible(BodyRegion)
invisible(Purpose)

Figure 2: Initial Query

Figure 2 shows the initial query builder window for a query based on the concept
Item. The user has clicked on Item, indicating that they wish to specialise the query.
This results in the form shown in Figure 3, where the user has already made their spe-
cialisation selections. The result will be the new query shown in Figure 4. This query
corresponds to the concept Item u 9hasPurpose:Protection u 9wornOn:Head.

In order to illustrate the interaction of the reasoner and the interface, consider
the case where the model contains an axiom Item u 9hasPurpose:Decoration v

3The modelling here is not really of interest, but it is useful to describe some of the model in order
to illustrate the behaviour of reasonableness.



Figure 3: Initial Restrictions

8worn::BelowWaist, i.e., an assertion that decorative items cannot be worn below
the waist.4 If we now take the query shown in Figure 5, and attempt to specialise,
the options provided are as shown in Figure 6. The important point here is that
BelowWaist is no longer offered as a possible specialisation (and neither are any
of the possible subconcepts of BodyPart which are said to be below the waist, such
as Foot).

It is important to note that the use made of the reasonableness information is under
the control of the application. The interface shown here has a fairly loose coupling to
the reasonableness layer. The application uses the reasonableness layer to calculate
RC for the focus concept C, and then generates the form. However, once the form
has been generated, the interface does not communicate with the reasonableness layer
until all choices have been confirmed. A tighter coupling would allow the form to
change dynamically: R could be recalculated after each selection and used to grey out
those options no longer applicable (or add new options which have become available).
In the example above, if the user first selected hasPurpose—Decoration on the

4Again, this is possibly a strange assertion to make, but serves the purpose of illustrating the mech-
anism’s behaviour.



Figure 4: Refined Query

form, the options referring to body parts below the waist would then be disabled.

6 Conclusion

We have described a reasonableness mechanism consisting of a restricted query lan-
guage (a subset of the underlying DL language) and a technique for exploiting ad-
ditional domain knowledge, in the form of reasonableness assertions, to constrain
the way in which new query concepts can be formed. The use of this mechanism has
been illustrated by a user interface application, the purpose for which it was originally
conceived. However, the mechanism could also be useful in other applications, e.g.,
supporting/constraining the extension of an existing KB by less sophisticated users.

A prototype has been implemented and has already been used in the TAMBIS sys-
tem. This implementation uses a modular architecture, with the CORBA-FaCT server
providing the DL reasoning services. As well as cleanly separating reasonableness
from the underlying DL, this architecture would make it relatively simple to use the
mechanism with other DL implementations.



Figure 5: Query

Acknowledgement

This work greatly benefited from discussions with Franz Baader during a visit he
made to Manchester University. The work was supported in part by EPSRC grant
GR/L71216.

References

[1] P.G. Baker, A. Brass, S. Bechhofer, C.A. Goble, N.W. Paton, and R Stevens.
Tambis: Transparent access to multiple bioinformatics information sources. an
overview. In Proceedings of ISMB98, 6th International Conference on Intelligent
Systems for Molecular Biology, 1998.

[2] Sean Bechhofer and Carole A. Goble. Using Description Logics to Drive Query
Interfaces. In Proceedings of DL’97, International Workshop on Description Log-
ics, 1997.

[3] Sean Bechhofer, Ian Horrocks, Peter F. Patel-Schneider, and Sergio Tessaris. A
Proposal for a Description Logic Interface. In Proceedings of DL’99, Interna-
tional Workshop on Description Logics, pages 33–36, 1999.



Figure 6: Restrictions

[4] Sean Bechhofer, Stevens Robert, Gary Ng, Alex Jacoby, and Carole A. Goble.
Guiding the user: An ontology driven interface. In Proceedings of UIDIS, Work-
shop on User Interfaces to Data Intensive Systems, pages 158–161. IEEE Com-
puter Society Press, 1999.

[5] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive descrip-
tion logics. In Proceedingsof LPAR’99, number 1705 in LNAI, pages 161–180.
Springer, 1999.

[6] A.L. Rector, Bechhofer S.K., C.A. Goble, I. Horrocks, Nowlan W.A., and
Solomon W.D. The grail concept modelling language for medical terminology.
Artificial Intelligence in Medicine, 9:139–171, 1997.


