
A Proposal for a Description Logic Interface

Sean Bechhofery, Ian Horrocksy, Peter F. Patel-Schneiderz

and Sergio Tessarisy

yUniversity of Manchester zBell Labs Research

Most description logic (DL) systems present the application programmer with
a functional interface, often defined using a Lisp-like syntax. Such interfaces may
be more or less complex, depending on the sophistication of the implemented
system, and may be more or less compliant with the KRSS description logic spec-
ification [7].

The Lisp style of the KRSS syntax reflects the fact that Lisp is still the most
common implementation language for DLs. This can create considerable barriers
to the use of DL systems by application developers, who often prefer other lan-
guages (in particular the currently ubiquitous Java), and who are becoming more
accustomed to component based software development environments.

In such an environment, a DL might naturally be viewed as a self contained
component, the details of whose implementation, and even the precise location in
which its code is being executed, is hidden from the application [2]. This approach
has several advantages: the issue of implementation language is finessed; the API
can be defined in some standard formalism intended for the purpose; a mechanism
is provided for applications to communicate with the DL system, either locally or
remotely; and alternative DL components can be substituted without affecting the
application.

A CORBA Server for DL Systems

We have used the Object Management Group’s (OMG) Common Object Request
Broker Architecture (CORBA) [5] to build a generic DL server, to be used initially
with both the FaCT and iFaCT systems [4]. CORBA was chosen because it is not
tied to any particular language or platform. In particular, CORBA can be used
with both Lisp and Java running on both Unix and Microsoft platforms.

The CORBA solution has all the advantages mentioned above.

� It facilitates the use of the Lisp implementations by non-Lisp client appli-
cations, for example in the TAMBIS (Transparent Access to Multiple Bio-

1



logical Information Systems) project, where the DL server is used by a Java
client [1].

� The generic API is defined using CORBA’s Interface Definition Language
(IDL), which can be mapped to various target languages.

� The application communicates with the DL via a CORBA Object Request
Broker (ORB). The DL server and client application may or may not be
running on the same physical machine.

� It would be possible to substitute FaCT or iFaCT with another DL reasoner,
for example DLP [6], without client applications even being aware of the
change.

It has been decidednot to pass concepts and roles as objects: treating them
as objects does not seem natural (as they have no functionality), and could lead
to a significant increase in overheads (as determining their structure might require
many object requests via the ORB). However, the CORBA IDL does not support
the definition of the kinds of recursive data type that would be required for the
representation of DL concepts and roles.

The solution adopted is to pass concepts and roles as single data items using
eXtended Markup Language (XML) [8]. The advantages of using XML are that
it is becoming a widely accepted standard, it naturally lends itself to the defini-
tion or recursive structures, and there are parsers available for several languages
(including Lisp and Java).

System Architecture

Only a minimal interface to the DL reasoner has been defined. It is intended that
additional functionality and more sophisticated interfaces be provided by other
components, which would be clients of the DL reasoner. Client applications
would then interact with an interface component. All these interactions make
use of the ORB bus, as shown in Figure 1.

This architecture provides a mechanism for developing a complete DL system
with interchangeable reasoning and interface components. It is even envisaged
that sub-components of the DL system, such as subsumption reasoner, Abox rea-
soner and hierarchy maintenance, could be separated. This would facilitate the
cooperative development of systems and the rapid integration of new components,
regardless of their implementation language.

2



ORB

DL
Reasoner

Interface
Component

Clients

Figure 1: FaCT server Architecture

The Client Interface Component

The interface provided by the DL reasoner is little more than ORB access to a
Lisp evaluate and print loop. A separate Interface Component has been imple-
mented (in Java), and provides a more sophisticated object oriented API for use
by client applications. This API is seen as an object in the CORBA namespace,
and provides operations which clients use to interact with the DL; the interface
seen by clients is thus separated from the real reasoning engine. Even this API is
very simple, and it is anticipated that many applications would want to augment it
either directly or by interposing another level of indirection. Moreover, the current
API only considers Tbox reasoning, and would need to be extended if an Abox
reasoner were added to the system.

The interface conforms to a standard “tell and ask” format: facts are asserted
to the knowledge base (KB) and queries answered without the user specifying
when or how reasoning should be performed. In order to improve efficiency, and
to support the (future) possibility of multi-user access to a KB, the interface has a
simple transaction control mechanism. This mechanism could also be augmented
with partial (complete) roll-back: the ability to undo the last (an arbitrary number
of) transactions.

Before performing any tell operations, a client must perform a
begin transaction operation; if this is successful it can be followed by any number
of tell operations. A transaction can be ended either with anend transaction or an
abort transaction operation, the latter having the effect of discarding all the tell
operations performed since the transaction began. Any ask operations performed
during a transaction will be answered in the normal way, but will not reflect any
of the tell operations in the incomplete transaction. As well as providing a simple
locking mechanism, grouping tell operations in this way gives the system a hint
as to when it might be sensible to perform some reasoning, without introducing

3



an explicit “classify” operation.

Errors are signaled by raising exceptions (a standard feature of CORBA). The
different types of exception are:

kr transaction required The requested operation can only be performed in the
context of a transaction.

kr op unimplemented The requested operation is not implemented by the
server.

kr expr error Concept or role syntax error. This also covers the case of unimple-
mented operators.

The small number of exception types is due to the simplicity of the interface and
the decision not to consider any kind of KB condition (e.g., concept or KB un-
satisfiability) as an error. Manykr op unimplemented errors could of course be
raised, depending on the capabilities of the DL reasoner.

Return Operation Parameters Meaning
void defconcept CN CN v >

void defrole RN RN v >�>

void implies c C1, C2 C1 v C2

void equal c C1, C2 C1

:
= C2

void implies r R1, R2 R1 v R2

void equal r R1, R2 R1

:
= R2

void transitive RN RN is transitive
void functional RN RN is functional
void clear T := ;

Table 1: Tell operations

The available tell and ask operations are summarised in Table 1 and Table 2,
whereCN is a concept name,RN is a role name,C is a concept,R is a role,
CN is a set of sets of concept names,RN is a set of sets of role names,P is a
triple (CN 1; CN 2; CN 3), andT is the set of axioms that make up the KB. The
CN andRN data types are used to return sets of named concepts or roles, each
of which may have a set of synonyms; in such cases no one name can or should be
preferred over the others. TheP data type is used to return a concept’s position
in the hierarchy, were it to be classified, in terms of its direct subsumers (CN 1),
synonyms (CN 2) and direct subsumees (CN 3).

All concept and role names are assumed to be atomic primitives, and the
defconcept and defrole operations are provided only for completeness. For ef-
ficiency, some optimisation would be required (either in the interface component

4



Return Operation Parameters Meaning
CN direct supers c CN direct subsumers ofCN
CN all supers c CN all subsumers ofCN
CN direct subs c CN direct subsumees ofCN
CN all subs c CN all subsumees ofCN
RN direct supers r RN direct subsumers ofRN
RN all supers r RN all subsumers ofRN
RN direct subs r RN direct subsumees ofRN
RN all subs r RN all subsumees ofRN
P taxonomy position C taxonomy position ofC
boolean satisfiable C (? @ C)?
boolean subsumes C1, (C1 v C2)?
boolean equivalent C1, C2 (C1

:
= C2)?

Table 2: Ask operations

or the DL reasoner), e.g., the conversion of general axioms to definition axioms
whenever possible [3].

References
[1] P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. Tambis:

Transparent access to multiple bioinformatics information sources: an overview. In
Proceedings of ISMB98, 1998.

[2] S. K. Bechhofer, C. A. Goble, A. L. Rector, W. D. Solomon, and W. A. Nowlan. Ter-
minologies and Terminology Servers for Information Environments. InProceedings
of STEP97, pages 484–497, 1997. IEEE Computer Society.

[3] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

[4] I. Horrocks. FaCT and iFaCT. InProceedings of DL’99, to appear.

[5] The Object Management Group.The Common Object Request Broker: Architecture
and Specification, 1998.

[6] P. F. Patel-Schneider. DLP system description. InCollected Papers from (DL’98),
pages 87–89. CEUR, 1998.

[7] P. F. Patel-Schneider and B. Swartout. Description logic specification from the KRSS
effort, June 1993.

[8] Extensible markup language (XML) 1.0. W3C Recommendation TR REC-xml-
19980210, February 1998. Editors T. Bray, J. Paoli, C. M. Sperberg-McQueen.

5


