
XFDU packaging contribution to an implementation of
the OAIS reference model

Arnaud Lucas, Centre National d’Etudes Spatiales

18, avenue Edouard Belin
31401 Toulouse Cedex 9

FRANCE
Arnaud.lucas@cnes.fr

Abstract. The ISO Reference Model for an Open Archival Information (ISO
14721) defines various concepts for archiving digital data, in particular models
of information packages to be stored in an Archive (Archival Information
Package or AIP), or to be exchanged between an information Producer and the
Archive (Submission information Package or SIP), or to be distributed to
Archive consumers (Dissemination Information Package or DIP), as indicated
in the following OAIS functional model figure.

4-

1.
1

MANAGEMENT

Ingest

Data
Management

SIP

AIP DIP

queries
result sets

Administration

Access
P
R
O
D
U
C
E
R

C
O
N
S
U
M
E
R

Descriptive
Info

AIP

orders

Descriptive
Info

Archival
Storage

The XFDU (XML Formatted Data Unit) is an emerging CCSDS
recommendation to package data and metadata, including software into a single
package to facilitate information transfer and archiving.

The purpose of this paper is to demonstrate what the XFDU packaging brings to
possible implementations of the OAIS SIP, AIP and DIP models.

mailto:Arnaud.lucas@cnes.fr

2 Arnaud Lucas, Centre National d’Etudes Spatiales

XFDU description

Fig. 1. XFDU logical view

An XFDU package is made of a physical container such as a ZIP file that contains
a manifest file (an XML file). This manifest contains all the valuable information
about the data inside the container and/or outside the container.

At the higher level, the manifest is split into in different parts:

• The Information Package Map contains the logical view of the package. It’s a
hierarchical xml tree representing the content of the package. Each leaf of the tree
is a Content Unit and can be referred to from the other parts of the package (i.e.
information is linked by the Content Unit reference ID).

• The Data Object Section contains all the physical information needed to get the file
objects out.

• The Metadata Section records all of the metadata for all items in the package.

• The Behavior Section associates executable code with the content of the package.

The Content Unit provides the primary view into the package as it refers to each of
the data objects and it associates appropriate metadata with each data object. The
Content Unit reference to the metadata is via one or more metadata Category pointers.
For each such pointer, there is a set of metadata classes that may be chosen to further
classify the metadata object. The actual Metadata Object may be included in the
manifest file or referenced by URI. A Content Unit may also contain other Content
Units reference external XFDUs.

XFDU packaging contribution to an implementation of the OAIS reference model 3

Fig. 2. Manifest file logical view

An XML Formatted Data Unit (XFDU) is the complete contents as specified by the
Information Package Map (i.e., the. highest level Content Unit) component of the
XML Manifest. This includes the XML Manifest document, files contained in the
XML Manifest, files referenced in the XFDU Manifest including those contained
within the XFDU Package, and resources (i.e., files and XFDU Packages) external to
the XFDU Package. The XFDU is a logical entity and may never exist as a physical
entity.

This structure allows using the XFDU packages in a lot of data transfer processes
such as described in the OAIS reference model.

XFDU as SIP (Submission information Package)

First example : Linking data & metadata

In the case of packages being ingested by an archive center, XFDUs can provide
obviously the link between data and metadata (embedded or available online).

If a syntactic description metadata is provided, an automatic check of the packaged

data can be performed. This means that the data file will be checked against an xml
schema provided by the metadata layer.

4 Arnaud Lucas, Centre National d’Etudes Spatiales

For this example, let’s take an XFDU containing a XML data file (data.xml) and its
associated metadata as a word document (data.doc). This data file is described by a
w3c schema file located by a given URL (http://www.ccsds.org/data.xsd). When the
archive receives this package, the informationPackageMap is read and the content
unit “data” (the file data.xml) is given back with its associated metadata (DOC
pointer) after being checked using the XSD pointer. A logical view of the XFDU
package should be :

Manifest
InformationPackageMap

 ContentUnit id = data
 MetadataObjectPointer = XSD DOC

 ObjectPointer = dataPtr
dataObjectSection
 dataObject id=dataPtr

FLocat = data.xml
metadataSection
 metadataObject id=DOC
 FLocat = data.doc

metadata Object id=XSD
 FLocat = http://www.ccsds.org/data.xsd

Web

Data.doc Data.xml

XFDU Package

Fig. 3. Manifest file linking data & metadata

2nd example : Dealing with large files

Managing large file is not a challenge for the XFDU, because a multi-part file
access is coded into the Data Object Section. In this example, a single ContentUnit
named data is split into three different parts at the DataObject level (using the FLocat
identifier). When receiving this package, all the parts are automatically concatenated.

http://www.ccsds.org/data.xsd

XFDU packaging contribution to an implementation of the OAIS reference model 5

Manifest
…
 InformationPackageMap

 ContentUnit id = data
ObjectPointer = dataPtr

 dataObjectSection
 dataObject id=dataPtr
 FLocat = data1.xml
 FLocat = data2.xml
 FLocat = data3.xml

…

concat

Fig. 4. Multipart files

3rd example : ordering content units

Dealing with multiple-part files highlights XFDU's order attribute, which allows
conditional processing. For example, it's possible to make a logical and hierarchical
view of the incoming packages, check up the integrity of the whole deposit and
launch a specific action when receiving the package. In this example, the archive
receives a book with an introduction and two chapters :

Manifest
…
 InformationPackageMap

 ContentUnit id = theBook
 ContentUnit id = Chapter2
 ObjectPointer = chap2Ptr
 Order=3
 ContentUnit id = Introduction
 ObjectPointer = introPtr
 Order=1
 ContentUnit id = Chapter1
 ObjectPointer = chap1Ptr
 Order=2
…

Fig. 5. Order and hierarchical view

6 Arnaud Lucas, Centre National d’Etudes Spatiales

4th example : Specializing information

The XFDU manifest file is a xml file driven by a W3C schema. This schema is
extensible, this means that you can add your own information in the ContentUnit
element. For example if you want to have a date and a comment in the manifest file,
you just have to extend the XFDU schema to add these elements into a new
MyContentUnit. Since MyContentUnit is derived from a ContentUnit, we have a
valid manifest file. This one should look like this :

Manifest
…
 InformationPackageMap

 MyContentUnit id = Data
 MyComment= “a modified Content Unit”
 ObjectPointer = dataPtr
 MyDate=2005/12/25

…

Fig. 6. Specialization of a ContentUnit

XFDU as AIP (Archival Information Package)

5th example : automatic generation of catalogues

The manifest file is a xml file. It can be processed by an XSLT stylesheet in order to
produce administrative information to help managing the archive. For example, the
information inside the XFDU manifest file can be processed in order to produce a
catalogue in the format of the archive management system.

XFDU packaging contribution to an implementation of the OAIS reference model 7

Manifest
…
 ContentUnit id=data1
 ContentUnit id=data2
…

XSLT
processing

Catalog
 Entry
 Name=data1
 Entry
 Name=data2
…

Fig. 7. Automatic transformation of the XFDU content

6th example : Optimizing an archive

Duplicated metadata can be simply grouped and accessed globally from the whole
system using the XFDU external links mechanism as seen in the first example. In this
example, different contentUnits in multiple XFDU packages share the same metadata.

Manifest
...
 ContentUnit id=dataA
 ContentUnit id=dataB
…

Metadata 1

Manifest
…
 ContentUnit id=XXX
 ContentUnit id=YYY
…

Metadata 2

Fig. 8. Archive optimization with metadata share

8 Arnaud Lucas, Centre National d’Etudes Spatiales

7th example : Specialization for multi-mission archive

. In a multi-mission archive, XFDUs can be specialized for each mission and stay
compatible at a higher level. The schema validating the manifest file can be modified
as seen in example 4. This can be a great saving, using the same software to access all
the data. ESA has a specialized XFDU format named SAFE. The SAFE packages
have been specialized in order to manage multi-mission data (from ENVISAT
instruments).

XFDU as DIP (Dissemination Information Package)

In this last part of my paper, the aim is to deliver data to the final user in a friendly
way. In fact, we can take advantage of all the preceding examples and gather all the
different XFDU techniques already shown.
To deliver data to the final consumer using the power of xml would be very easy (data
transformation to the requested data format using XSLT). As for the SIP, dealing
with large files is easy with XFDUs (automatic split can be performed). Once again,
the hierarchical architecture allows the packaging of several requested products into
one logical package. The metadata part brings information about the processing of the
extracted data and even points to extra valuable services that could be of interest for
the requester, like for example a time based extraction.

Conclusion

This paper has shown some possible use of the XFDU packages. Sure, there are
still a lot to discover. The technology behind the XFDU is universal (XML and
schemas) and the design of this CCSDS recommendation is made to cover a very
large panel of needs, originally for the archive community but not especially.

References

CCSDS : http://www.ccsds.org
XFDU development site : http://sindbad.gsfc.nasa.gov/xfdu

http://www.ccsds.org/
http://sindbad.gsfc.nasa.gov/xfdu

