
Algorithm Preservation versus Data Preservation
How to Manage Value-Added Processing

in Earth Observation Payload Ground Segments

M. Boettcher, B. Pruin, C.Sommer, M. Wilkniss

Werum Software & Systems AG, Lueneburg, Germany
martin.boettcher@werum.de http://www.werum.com

Abstract. Besides long-term preservation and operational accessibility of data,
the preservation of operational algorithms – called processors – is an issue in
earth observation payload ground segments. This contribution describes this as
a choice between systematic and on-demand processing, a corresponding proc-
essing infrastructure to support several processing scenarios, the model of an in-
terface between data management systems and processors, and guidelines for
processor implementation.

Introduction

Would it not be the simplest way just to store the raw satellite data products and to
generate all higher level products on demand, on customer’s request? This would also
avoid the repeated reprocessing of all data when a new bug in the processor has been
detected or when better parameters are available. On the other hand, there are these
higher level products, people do it, they compute the data sets that they consider valu-
able systematically. There seem to be reasons for this as well as for the other.

Taking this as a starting point this paper argues for a well-defined but open proc-
essing infrastructure to support the preservation of processing systems, or more pre-
cisely, the preservation of their status of being operational. Especially in scientific en-
vironments it is often the case that operation is tied to developers of the processors
and that operation stops when a developer resigns from its job. Knowledge of how to
operate gets lost.

The question is how to improve this situation. One answer is: by good, long-living
processor implementations and by a flexible and powerful environment for processors
to allow processors to be kept simple. The paper will discuss these issues along the
lines of the Data Information and Management System DIMS of the German Remote
Sensing Data Centre DLR-DFD [1][5] and a solution that is going to be used for the
new ESA Multi-Mission Facility Infrastructure MMFI in the FEOMI project [4].
DIMS has been developed by DLR and Werum Software & Systems AG and is op-
erational since 2000 starting with CHAMP and SRTM. It has integrated about 30 dif-
ferent processing systems, among them algorithms for ERS, ENVISAT-VA, MODIS,
METEOSAT, METOP, and TerraSAR-X. FEOMI will integrate ENVISAT, ERS and
all third-party missions of ESA and is expected to be used for future missions.

Processing Scenarios

Processing in general fills the gap between low level raw data products (level 0) pro-
vided by satellite sensors and higher level products (level 1B, level 2, level 3 value-
added products) requested by users. The generation of higher level products can be
organised in two principally different ways or scenarios, i.e. by systematic processing
or by processing on-demand.

Both of these scenarios are used in payload ground segments and both have their
reasonable application. Two examples are systematic production of GOME L3 prod-
ucts, and on-demand production of MODIS L1B products.

Systematic Processing Example “GOME L3”

The Global Ozone Monitoring Experiment (GOME) level 3 is a product with global
coverage that is computed from several days of level 2 input products that cover a
single orbit each (Fig. 1).

10110010
00010101
10111001
01000100

300

500
600

700

240

O3O3

Fig. 1. Generation of GOME L3 products with global coverage from inputs with orbit coverage

To generate an ERS GOME L3 the processor composes e.g. 7 days of inputs using fil-
ter algorithms (Kalman, Rose). The generated L3 nominally gets a date at the middle
of the compose interval. Daily, a new product is generated (or at least has been in the
past) for the nominal date several days ago (Fig. 2).

O3

L2

14 or 15
L2 products

per day

L2

L2L2L2L2L2L2L2L2L2L2L2L2L2L2

L2L2L2L2L2L2L2L2L2L2L2L2L2L2

L2L2L2L2L2L2L2L2L2L2L2L2L2L2

L2L2L2L2L2L2L2L2L2L2L2L2L2L2

L2L2L2L2L2L2L2L2L2L2L2L2L2L2

L3 L3

L2L2L2L2L2L2L2L2L2L2L2L2L2L2

L2L2L2L2

one L3 product per day
out of 7 days of L2 input

L2L2

Fig. 2. Use of several days of L2 inputs for a single GOME L3 output

There are 14 or 15 orbits per day, such that about 100 L2 input products are used to
generate a L3. For the next day again 100 input products are required, with an overlap

of 6 days that can be cached in a processing system. Besides the fact that the GOME
L3 is considered more useful than the L2, systematic processing requires only a 7th of
input retrievals compared to production on request.

There are other examples of systematic processing. ENVISAT L1B and L2 prod-
ucts are systematically generated, archived and used for value-adding. The Shuttle
Radar Topography Mission SRTM is another good example. Interferometric data sets
have been used to systematically compute a digital elevation model (DEM) with
about 130.000 tiles. There are constraints regarding the sequence of processing of a
data take such that it would have been difficult to support production on demand for
the DEM tiles, besides the large processing time and the amount of human expert in-
teraction required.

Processing On-demand Example “MODIS Level 1B”

An example of production on demand is the MODIS Level 1B processing system
(Fig. 3). The processor is able to process subsets of the L0 input such that a geo-
region or the corresponding acquisition time interval can be specified by the customer
in the production request. The processing system in addition retrieves suitable orbit
and attitude files as inputs. It generates the L1B in a few minutes depending on the
length of the selected time interval.

MODIS L1B
Processing System

MODIS
L1B

MODIS
L0

Precise
Orbit

Attitude

Prod.
Request

Fig. 3. Generation of a MODIS Level 1B from L0 on request

The result of processing is a delivery product that is delivered to the customer. It is
not preserved. On the other hand preservation of the operational processing system
must be ensured to provide L1B data in this scenario.

Comparing Systematic Processing and Processing On-demand

Table 1 lists features of the two production scenarios. The strangest feature of sys-
tematic processing is the amount of reprocessing done for many product sets in prac-
tical cases, which requires algorithm preservation, too. One of the strange features of
processing on-demand is that it pretends to provide producible products but the actual
generation may finally fail when it is requested, e.g. because of errors in the data or
the algorithm.

Table 1. Advantages and disadvantages of systematic processing and processing on-demand

Systematic Processing Processing On-demand
All high level products are gener-
ated in advance even if only some
of them will ever be requested.

Only products that are requested will
be produced.

High level products require addi-
tional storage space in the archive.

Only the low level products (L0) re-
quire space in the archive.

High level products are offered as
existing, they may be quality
checked before they are offered.

High level products are offered as
producible, but generation may fail.

High level products can immedi-
ately be delivered.

Processing time delays delivery at
time of request.

Standard processing options must
exist. The results of processing are
standard reference products.

Individual processing options from
user requests can be supported. The
results of processing may be custom-
ized delivery products.

Subsequent processing chains and
subscriptions on the high level
product can be supported

The same product may have to be re-
generated if several customers re-
quest the same.

Reprocessing is required whenever
better algorithms or parameters are
available.

Better algorithms or parameters can
be used as soon as they are available.

Computing power is required for
processing of all products and for
reprocessing.

Computing power is required for the
amount of requests.

Preservation of high level products
is required.

Preservation of an operational algo-
rithm is required beyond end of the
mission.

Generic Functions of Processing Systems

In the introduction it has been stated that the preservation of operational algorithms
can be improved by a powerful environment that allows processor implementations to
be simple and thus maintainable.

There are certain functions of processing systems that reappear in many of them.
Instead of implementing them individually they can be extracted to a generic compo-
nent that becomes part of every processing system (Fig. 4).

Processing System
Specific Functions and Structures

request
driven

processing

input retrieval

output cataloguing
& archiving

systematic
data driven
processing

(trigger)

ingestion

pickup
point

external
data provider

Processor

Generic Functions

Workflow Rule

workflow
control

managed
processing

cache

request
queuing and
scheduling

timer
control

Workflow RuleWorkflow Rules

ProcessorProcessors

Products

Requests

input or
auxiliary products

determination

output
dissemination

Fig. 4. Generic functions of processing systems

• request queuing
Processing systems receive production requests from other systems of the pay-

load ground segment (especially a production control facility), from an operator, or
as batch file. Request queuing implements the multi-request capability of process-
ing systems, freeing processors from this requirement.

• processing workflow scheduling
Processing systems range from simple single-step single-processor systems to

systems with complex parallelized workflows. Workflow scheduling organizes
processing workflows by rules in a request-dependent way. There is a rule API or
configuration capability for processing system specific extensions and for dynamic
control. This function keeps processors free from the burden of step scheduling,
makes processing progress visible to operators, and allows interrupting processing
between the steps that are considered as transactions.

• product handling and cache management
Input retrieval from the archive and cache management provides processors

with their inputs and working directories and handles their outputs. It feeds outputs
into the next processor of a chain or archives them. It allocates space in cache be-
fore processing and cleans up afterwards. This function simplifies processors that
access products as files and directories. This decouples them from the product in-
terface of the data archive and inventory.

• processor charging and control
The generic functions of a processing system controls processing and therefore

needs adapters to processors that may be implemented as executables, shell scripts,
more and more as Java classes, or as shared libraries implemented in programming

languages like C/C++ or Fortran. The generic functions adapt to the processor in-
terface, start processors, provide them with an environment and parameters and
handle results and exceptions.

• uniform operating
Though processing systems differ in their processors and the steps executed, it is

a function of the generic part to provide uniform views, to some extend uniform
behavior, uniform request control and uniform administration and startup for all
kinds of processing systems. This is an advantage for operations.

Fig. 5. Example views of requests, products and processing steps of a DIMS processing system

• distribution and load balancing
Processing systems get more complex and requirements are more challenging.

The distribution of processing load to several hosts is a function that is increasingly
used in processing systems.

What remains as specific adaptations are (and must be) done as workflow rules and
processor implementations. Specific parts of the system at runtime are the individual
requests and products.

In the Data Information and Management System DIMS a component named Proc-
essing System Management (PSM) [2] implements the functions listed above. It is a
small workflow engine with additional functions adapted to the task in the environ-
ment of other components like Operating Tool as GUI, Product Library [3] as inven-
tory and archive, and Production Control.

Among the functions supported by the PSM are also the supported scenarios, usu-
ally not all of them in the same system, but used as generic patterns:
• ingestion

Ingestion transfers data from external sources as products into the Product Library.
These products are then available to other processing systems and to ordering and de-
livery. External sources may be receiving station systems, external system including
legacy applications to be replaced by the new data management system, tape drives
and pickup points of FTP servers that are systematically scanned. Polling and listener
models of ingestion can be supported. By implementing them in processors the solu-
tion is decentralized and open to new interfaces of additional types of systems.

In ingestion scenarios the PSM starts the ingestion processor, cares for cache
space, starts additional processing steps, handles exceptions, and archives the prod-
ucts. Typical processing steps of ingestion systems are input verification, metadata
extraction and quicklook generation.
• systematic processing

The PSM supports systematic processing by subscription/trigger for new products
in the Product Library (e.g. L1 from all inserted L0) and by timers and queries (e.g.
daily composites of atmospheric products). On trigger or timer events the PSM de-
termines and retrieves new products, initiates processing and archives the outputs. For
systematic processing the PSM ensures seamless product generation even after main-
tenance down times.
• on-demand production and post-processing

PSM supports request-driven processing. Production requests are typically submit-
ted by Production Control to PSM. Requests either stem from a user order or they are
part of a production chain controlled by Production Control. Requests specify inputs,
processing parameters and optionally the desired output. PSM retrieves the input
products from the Product Library, charges processors and usually stores outputs in
the Product Library again. PSM signals status back to Production Control. The output
can be a reference product, or it is a delivery product as output of post-processing
only stored for delivery.
• near-realtime production and delivery

By chaining ingestion or systematic processing with post-processing, the PSM is
able to run autonomous near-realtime processes requiring no intermediate external re-
sources. The near-realtime processing chain can include a final online delivery step
transferring generated delivery products to an FTP pick-up point. Processing results
can additionally be stored in the Product Library without affecting the near real time
process.

Making these functions generic simplifies processors to filter programs with files
input and files output. Whether they are used in systematic processing scenarios or for
processing on demand makes no difference. Note that integration of processing sys-
tems is not for free. There is an effort of reaching the status of being operational, e.g.
for workflow definition, product modeling in the inventory, and processor interfacing.

An Interface Model for Processors

Often processing algorithms are implemented already before their integration into an
operational processing system is planned. Secondly, there are many ways to imple-
ment a processor. Consequently, the generic part (PSM) should provide adapter pat-

terns how to integrate processing algorithms. Fig. 6 shows different types of adapters
currently used with the PSM.

Java
Processor
Interface

Processing System Management / Distributed Processing Node

Java
Processor

Shared Library
Processor

Executable/Shell Script
Processor

Java
Callback
Interface

Executable
Processor
Interface

Executable
Callback
Interface

C/C++/Ftn
Processor
Interface

C/C++/Ftn
Callback
Interface

Fig. 6. Variants of processor adapters

The Java interface means that the processor is implemented in a class with a
method with parameters. The method starts the processor for one request. The pa-
rameters transfer information about inputs, outputs and processing parameters to the
processor as a processing request upon start of processing of a product. Shared library
means a function in a compiled and bound software library loaded into the processing
system. Executable or shell script means a program executed as a child process with
information about inputs, outputs and processing parameters provided as command
line argument, environment variables or in a processing request file.

The interaction between PSM and processor is not complete with its start. A prin-
ciple sequence (Fig. 7) comprises intermediate status callbacks from the processor to
the PSM and optional command calls from the PSM to the running processor. Finally
the result of processing is returned to the PSM by finishing the start function. The re-
turn value usually only distinguishes success or failure. Processing results are pro-
vided as output products.

PSM

Threads

start()

Processor
Thread

return from start()

command()

successMessage()

PSM
Threads

start()

Adapter
Thread

return from start()

command()

Executable

exec()

reads and filters
stdout and stderr

child terminates

writes to stdin

successMessage()

composes
command line

Fig. 7. Processor call interface for in-process execution or child process generation

The right side of Fig. 7 depicts the interaction in case of executables or shell
scripts. Here, callbacks and commands may be exchanged via stdin and stdout which
unfortunately is not trivial.

The interface between the generic PSM and the processors or more generally be-
tween the generic functions of a processing system and the processors is defined by
the call interface including signatures and the product interface. There could be said

more about the call interface e.g. to support ingestion which requires additional meth-
ods but it is dropped as a detail here. The product interface defines the structure of the
data products. It is an interface between a processor and its environment. The prod-
ucts are referenced as paths to directories in the methods and functions of the call in-
terface. Fig. 8 depicts this for inputs, outputs and intermediate working directories for
a single request.

primary &
metadata

primary &
metadata

primary
quicklook
metadata

Cache
Directories

...

Processor

input product

input product

output product

working directory

reads

reads

reads/writes

writes

Fig. 8. Processor’s file interface to products (example with two inputs and one output)

There are at the same time other directories in the cache for other requests. The
structure and content of the directories is the product interface for processors. It must
be defined. It should be flexible enough to support different formats, different number
of files and different amount of metadata accompanying each product. An example of
this is the product model of the DIMS Product Library with its Item Information File
as exchange format for metadata and as index to contained components and files [3].

There is a need for such models because
• products are exchanged between different processors, one’s output is the other

one’s input
• products are long-term stored in the product library
• products are searched for, which requires a certain amount of meta data to be avail-

able about each product
A product model is commonly developed together with the processing system that
generates this type of product. Though sometimes not defined explicitly also interme-
diate products and working directories have an implicit model. It is the agreement be-
tween the processors that write and read from such products what they shall generate
or can expect to find in a product directory.

Guidelines for Processor Implementation and Integration

Cancellable Processors

A processor is cancellable if it reacts on the cancel command by interrupting process-
ing. It is a desirable feature of processors with sensible execution times (more than a
second).

The cancel command is to be implemented in the command method of the proces-
sor implementation. Because processors are executed in separate threads or processes
there are in principle no secure ways to abort them immediately by the command
method executed from another thread. The reason for this is that the processor thread
may have locked resources that are never released in case of aborts. Therefore there is
a proposed implementation pattern that uses a semaphore and notification for syn-
chronization.

This way the processor aborts gracefully on a cancel command by terminating
where the implementation has foreseen it. Note that the delay between the command
and the reaction of the processor will in some cases not suffice to abort a processor
gracefully when the PSM is shut down.

Restartable Processors

A processor implementation is restartable if wherever it has been aborted it can be
started again with the same parameters on the same inputs, working directories and
outputs and it will be able to succeed in processing. This does not require that partial
results of the aborted run are necessarily used. It simply means that the modifications
done before does not hinder a restart.

There are features of processor implementations that support this property:
• initial cleanup: Processors should be prepared to find files in their output directory

from preceding runs with the same parameters that had been aborted. The proces-
sor should not fail by IOException when creating a file just for the reason that
there is a file with this name already. It should overwrite it.

• no modification of input files: The processor should usually not modify an input
but write to an output instead. If this must be done for any reason the processor
should expect that modifications may have been done partially before.

• look for newly generated products: If the processor uses a cache allocation callback
method for ingestion it should check whether the product created is among its pa-
rameters already. It should usually be re-used in this case.

To be restartable is a strongly recommended property of a usual processor. For inges-
tion processors it is not required to be restartable in this sense. Instead, they must en-
sure that an inspected product is first approved by the corresponding ingestion call-
back method and then marked as being ingested, e.g. by removing it from the pickup
point.

Re-entrant Processors

A processor implementation is re-entrant if it is save to run it concurrently without
mutual disturbance. The important prerequisite that inputs and outputs of several con-
current processors are separated in the cache is assured by the PSM. This property is
often easy to achieve, leads to cleaner implementations, and allows running the proc-
essor concurrently on different requests.

To be re-entrant the processor implementation should
• use re-entrant versions of libraries and functions
• avoid static global variables
• do not write to places except for those provided as output directories
Processors that write anything to their local processor software directory are candi-
dates to miss this property.

To summarise this, Table 2 lists some practices how to make processor implemen-
tations short-living. The list is non-exhaustive.

Table 2. Guidelines for writing bad processors

Features of processor difficult to maintain
• writes intermediate files into local directory of the processor implementation
• runs for hours without possible breakpoints
• crashes if it is restarted without prior cleanup
• runs for hours without progress feedback
• fails without error handling
• generates lots of debug output in operational mode
• requires some files from the implementers home directory

References

1. Mikusch E., Diedrich E., Göhmann M., Kiemle S., Reck C., Reißig R., Schmidt K.
Wildegger W., Wolfmüller M.: The Data Information and Management System for
the Production, Archiving and Distribution of Earth Observation Products. In Data
Systems in Aero-Space (DASIA), EUROSPACE, Montreal, 2000

2. Boettcher M., Reissig R., Mikusch E., Reck C.: Processing Management Tools
for Earth Observation Products at DLR-DFD. In Data Systems in Aero-Space
(DASIA), EUROSPACE, Nice, 2001

3. Kiemle S., Mikusch E., Göhmann M.: The Product Library – A Scalable Long-Term
Storage Repository for Earth Observation Products. In Data Systems in Aero-Space
(DASIA), EUROSPACE, Nice, 2001

4. Pinna G. M., Mikusch E., Bollner M., Pruin B.: Earth Observation Payload Data
Long Term Archiving - The ESA’s Multi-Mission Facility Infrastructure. PV 2005,
ESA ESRIN, Edinburgh, 2005

5. Kiemle S., Bilinski C., Buckl B., Dietrich D., Kroeger S., Mikusch E., Reck C.,
Schmid F., Schroeder-Lanz A.-K., Wolfmueller M.: Data Information and Manage-
ment System for the DFD Multi-mission Earth Observation Data. PV 2005, ESA
ESRIN, Edinburgh, 2005

