

Activities in the Development of Standards and Technology for the Long Term Retention of 3D Data

Andy Chinn TranscenData Europe Ltd email: andy.chinn@transcendata.com

International TechneGroup Inc. (ITI)

Background

- Founded in 1983
- Privately held
- Headquarters in Cincinnati

Global Presence

- North America
- Europe
- Asia Pacific

Business Offerings

- Engineering Process Improvement Consulting (CP/PDTM)
- Analysis, Simulation, Test, and Reliability Engineering Services
- TranscenData Product Data Integration & Interoperability

ITI TranscenData History

Automation & Comparison

- O DEXcenter
- O CADIQ V4

PLM Systems Integration

- Matrix One, TeamCenter, Pro/I, Pro/PDM \bigcirc
- Agile, Oracle, QAD, SAP О

Quality Testing and Repair

- O CADfix
- O CADIQ

STEP Translator Development

- O CADDS, I-DEAS, Inventor, VisView
- O STEPworks

IGES Translator Development

- O CADDS, Mechanical Desktop, Inventor, Medusa, Mentor Graphics
- O IGESworks

Long Term Archival Process Requirements

- Enable comprehensive and precise validation of part models that have been exported to STEP and imported into another CAD system after *long-term archival*
 - Can be 30 years or longer
 - Expecting two new CAD system generations
- Avoid false negative (incorrect fail) mass property validation
 - Accuracy differences between CAD system mass property algorithms can indicate a significant but *misleading difference*
- Avoid false positive (incorrect pass) mass property validation
 - Localized, significant geometric deviations can be overlooked when only mass properties are used
- Enable the storage of all validation property data in a STEP part model to create a self-validating STEP file
- Same validation approach could be applied to other open archival formats

Complexity of 3D CAD Data for LTA

Inter dependencies on other systems and translators
Inter relationships between parts of a single model

- Topology and Geometry
- Features
- Shape and Form
- Different Systems Different Tolerances
- Requirements of downstream application
- Different complexities
- Different entities supported
- Model Quality standards
- Assemblies
- Coordinate systems

۲Z

Basic Long Term Archive Process with STEP

- Is this a robust process?
- Is the archive reliable?
- Can you trust the archive and future retrieved data?
- What checks are in place to validate the process?
- What could possibly go wrong...?

Data Lost During STEP Export for LTA

Revolved faces are lost during STEP export from source CAD system producing invalid STEP solid model

Shape Change During STEP Export for LTA

Complex blend (procedural surface in native model) is approximated in STEP and gives a deviation of 0.004 inch (0.1 mm)

Shape Change During STEP Export for LTA

Quality defects and shape changes caused by poor surface approximation during STEP export

Position Change During STEP Export for LTA

Orientation and location of this pattern of bolts changes because positional data is misinterpreted

Part Re-size During STEP Export for LTA

Some of the bolts in this assembly are larger in size after STEP assembly import/export

Validated 3D Long Term Archive Process

- Verify native CAD model for downstream reuse
- Validate the STEP export has equivalent quality and shape and add validation properties to the STEP file
- Validate the STEP import has equivalent quality and shape

Long-Term Archival Validation with STEP

Sampling points evaluated on the native model are stored in the STEP model to enable precise validation after retrieval into a future CAD system

STEP Developments for the LTA Process

STEP Validation Properties

- The PDES/ProSTEP CAX Implementers Forum currently recommends these mass property validation properties be defined in STEP part models
 - Model (solids and/or surfaces) volume, area and centroid
 - Each solid's volume, area and centroid
 - Each open shell's area and centroid
 - Each assembly component's centroid
- ITI & Theorem proposed an extension, that was accepted, to enable precise validation by adding these validation properties
 - Smooth face sampling points (face interior and smooth edges)
 - Sharp face sampling points (sharp or open edges)
 - ITI has productionized the only commercial product to facilitate this

CADIQ Product Summary

Native CAD Interfaces (API)

- CATIA V5, Unigraphics, Pro/ENGINEER, SolidWorks
- CATIA V4, I-DEAS, CADDS5
- Parasolid, STEP, IGES

Specialized User Interface

- Rapid review of diagnostic feedback
- Side-by-side viewing of quality or shape differences

Quality Diagnostics

- Invalid geometry
- Unrealistic features

Comparison Diagnostics

- Unacceptable changes
- Unintentional changes
- Undocumented changes
- **STEP Validation Properties**
- **Assembly Analysis**
 - CATIA V5, STEP, Parasolid

Compare CAD models

- 16 -

Identify quality defects

CADIQ STEP Translation Validation

Validate the exchange or archival of any STEP model produced by *any* STEP translator from *any* major CAD system

CADIQ STEP Validation Properties Module

- Enable precise validation of part models that have been exported to STEP and imported into another CAD system
 - Design data delivery
 - Long-term archival
- Avoid false negative mass property validation
 - Determine when differences in the accuracy of mass property calculation algorithms are reporting a false difference
- Avoid false positive mass property validation
 - Determine when significant localized geometric deviations are missed by overall mass property calculations
- Enable the storage of all validation property data in a STEP file
 - Extend existing CAx-IF Recommended Practices
 - Remove dependence on properties in a separate, proprietary CADIQ file
- Add validation properties to any STEP file from any vendor

Raising the Value of your Product Data

Ensure CAD Model Quality

Maximize CAD Model Re-use Facilitate Global Product Development Enable Engineering Supply Chain Data Exchange

Product Data Integration & Interoperability Solutions

www.transcendata.com

