
Notes about possible technical criteria for evaluating
institutional repository (IR) software

Andy Powell

UKOLN, University of Bath

December 2005

Introduction
This document attempts to identify some of the technical criteria that might be used
to evaluate the different institutional repository (IR) software platform options,
particularly in terms of the ‘machine’ interfaces that the repository offers. The list of
issues is not intended to be exhaustive, and the approach is based on the assumption
that other, non-technical, criteria such as usability and configurabilty have already
received detailed consideration in other documents.

Brief overview of main IR software
Three of the most popular IR software platforms are DSpace1, ePrints.org2 and
Fedora3 (though there are others of course). Trying to compare these three is a little
like comparing apples and oranges. DSpace is a Java-servlet application that runs
under Apache Tomcat. EPrints.org is written in Perl and typically runs under
Apache, using mod-perl to improve performance. Both applications provide the
basis for an IR ‘out of the box’, including an end-user Web interface and so on. Both
offer similar functionality to the end-user. Fedora on the other hand is more like a
software toolkit. It provides the underlying IR framework, but requires custom
development of a user-interface, either by layering an existing suite of user-interface
tools on top of the Fedora APIs, or by building from scratch.

Any decision about which IR software platform to choose must be based not only on
the technical and functional capabilities of the system but also in determining best fit
with organisational IT strategy and with the availability of local software
development effort. However, as a way of helping with that decision making
process, it may be sensible to ask the developers of these software platforms to
respond to the issues raised in the sections below. Some potential questions are
suggested in each section.

Finally, it is perhaps also worth noting that the author has little or no recent
experience of installing any of these software platforms. Therefore, no attempt has
been made to comment here on the specific capabilities of the three systems with
respect to the issues below. Detailed experience of installing, configuring, using and
preferably developing against each of them would be a significant advantage in

1 DSpace
< http://www.dspace.org/>
2 EPrints
< http://www.eprints.org/>
3 fedora
< http://www.fedora.info/>

being able to provide a proper comparison of their technical strengths and
weaknesses.

Technical criteria
The outcomes of the ePrints UK project4 and, more recently, discussions with
colleagues at SURF have raised a number of technical issues that need to be
addressed in the area of IRs. These are described in more detail below.

Complex objects
Repositories, particularly eprint archives, have tended to be developed around
relatively simple ‘single item’ objects. Even where the IR handles multiple versions
and/or formats of the same item, there tends to be a single metadata record for the
item, linking to the multiple versions/formats.

In the case of learning object repositories (LOR) it is well understood that much of
the content that will be deposited will be in the form of IMS Content Packages (i.e.
reasonably tightly-coupled complex bundles of resources). The same is also likely to
be true of eprint archives and research data repositories in the fullness of time, where
we are likely to see a move towards some form of packaging of ‘complex objects’.
Consider, for example, a typical eprint (if such a thing exists). Conceptually, an
eprint consists of a ‘work’ and one or more manifestations of that work (a PDF file, a
Word document, etc.). Each of these things may also have separate metadata records
associated with them. Being able to bundle these separate chunks of content and
metadata together in some form, wrapped in a METS or MPEG-21 DID package, will
simplify (at least in the long term) the way that these kinds of objects can be
deposited, managed and retrieved from repositories.

In order that ‘complex objects’ can be dealt with in a fully automated and
interoperable way we need to develop complex object models (i.e. an agreed way to
model the works and manifestations described above). We also need agreed
mechanisms for instantiating those models in concrete syntaxes such as XML.

Although building support for one or more of the current packaging standards into
repository software should be relatively straight-forward, software may also need to
have some knowledge about the ‘complex object models’ being used. Without this
knowledge, IR software will be able to unbundle a package into its component parts,
but it will not understand the relationships between the component parts in order
that actions can be performed on them in sensible ways.

In the general case, the issues associated with sharing knowledge about the
modelling constructs being used within complex objects are non-trivial. The author
suggests that this is a ‘semantic Web’ issue that requires significant research work.
In specific cases, it may be possible to agree particular ‘complex object’ models for
particular applications (a model for eprints, a model for datasets, a model for lecture
objects, etc.). But even if this approach is taken, designers of IR software will need to
marry their potentially complex internal data-structures with the externally visible
packaging standards accordingly to each of the chosen models, as data flows in and

4 The ePrints UK Project – Final report
< http://www.rdn.ac.uk/projects/eprints-uk/docs/final-report/eprints-uk-final-
20050316.pdf>

out through the repository APIs (search, harvest, deposit, delete, obtain). It is not
clear how easy it will be to do this in an open-ended and flexible way.

The kinds of questions that could be put to IR software developers include:

� Does your software provide any support for ‘complex objects’ (i.e. packages)?

� If so, what packaging standards does it support (IMS-CP, METS, MPEG-21
DID, other)?

� How are ‘complex objects’ handled within the IR? Are they treated as a
single blob of data, or does the IR unbundled them into component parts in
some way?

� How are ‘complex objects’ handled by the interfaces (services) offered by the
IR (search, harvest, deposit, delete, obtain)?

� Have any attempts been made to document (and share) the ‘complex object
models’ used within the IR?

� If the system allows ‘complex objects’ to be unbundled into their component
parts, can the components be re-assembled into a complex object? Can
component parts from multiple ‘complex objects’ be combined into a new
‘complex object’?

Metadata
It is clear that the use of simple Dublin Core metadata and the rather loosely coupled
bundles of related objects found in many IRs (as described above) leads to problems
for the consumers of metadata from those systems. As the ePrints UK project found,
it is difficult or impossible in many cases to reliably tie identifiers and metadata
records to individual ‘manifestations’ of eprints (i.e. different formats), largely
because of the widely varying practices across institutions. In practice this means
that it is often difficult for software robots to move reliably from the harvested
metadata record to the full-text of an eprint.

Moving to richer metadata, for example as offered by qualified Dublin Core, may
help with this problem but only partially. The fundamental problem lies in our lack
of an agreed way to model, instantiate and handle complex objects (see above).
However, it is probably the case that moving to the use of qualified Dublin Core
metadata in the current ‘simple object’ environment would improve things. For
example, it would be very useful to agree a set of guidelines for how to use qualified
DC to describe eprints (along the same lines as the current guidelines for using
simple DC to describe eprints5), possibly based on the DC Libraries Application
Profile.

The kinds of questions that could be put to IR software developers include:

� Do you offer support for qualified Dublin Core?

5 Using simple Dublin Core to describe eprints
<http://www.rdn.ac.uk/projects/eprints-uk/docs/simpledc-guidelines/>

� If so, how configurable is this aspect of the IR (i.e. does it support arbitrary
application profiles - sets of metadata terms, qualifiers and controlled
vocabularies)?

� Is qualified DC also supported through the interfaces (services) offered by the
IR (search, harvest, deposit, delete, obtain)?

Identifiers
IR software should be able to uniquely identify all the objects of interest stored
within, and associated with, the repository. Note that this may include digital objects
(files, metadata records, etc.), physical objects (authors, books, etc.) and conceptual
objects (vocabulary terms, works, etc.). For each of these identifiers, the IR software
should be able to serve a reasonable representation of the identified object.

Again, this issue is very closely related to the ‘complex object’ modelling issue above.
Some IR systems may be limited in this respect. For example, if ‘complex objects’ are
treated as blobs of data within the system, then it may not be possible to identify
(and hence obtain a representation of) a particular component within the ‘complex
object’. If identifiers are assigned to an eprint ‘work’, then it may not be possible to
uniquely identify (and hence obtain a representation of) a particular ‘manifestation’
of that work.

The kinds of questions that could be put to IR software developers include:

� How are identifiers assigned within the IR?

� Are all objects within the IR assigned a unique and persistent identifier? This
includes conceptual works, document manifestations, authors, contributors
and other ‘agents’, metadata records, ‘complex object’ packages, terms in
vocabularies and so on). Are some objects not assigned a public identifier?

� Is it possible to ‘resolve’ that identifier in order to obtain a representation of
the object?

� How is the persistence and uniqueness of identifiers guaranteed?

� How are object identifiers exposed through the interfaces (services) offered
by the IR (search, harvest, deposit, delete, obtain)?

Machine interfaces (services)
Each IR software platform is likely to offer a range of machine interfaces (or services)
to the content and functionality it offers. These interfaces need to be documented
and, where possible, conform to agreed standards. As a community, we need to try
and adopt a limited set of interface definitions. Several are already well known and
widely adopted, including HTTP, XML, DC, IEEE LOM, Z39.50, SRW/SRU, OAI-
PMH, RSS, OpenURL, METS, MPEG-21 DID, IMS-CP. Providing a machine interface
for ’deposit’ is currently less well standardised. Developing such an interface
(assuming it were to be widely adopted) would allow third-parties to develop tools
such as content packagers that could automatically deposit a newly created package
into a repository. Further, such tools could work against any IR that supported the
same ‘deposit’ interface.

Recent discussions have identified a number of candidate protocols for a ‘deposit’
interface including HTTP POST, SRW/SRU Update, the Fedora deposit interface,

WebDAV, and the Atom Publishing Protocol. Some work needs to be undertaken to
evaluate which, if any, of these is most appropriate for widespread adoption or
whether there are other better candidates.

The kinds of questions that could be put to IR software developers include:

� What kinds of machine interfaces does your software support?

� What (open) standards do your interfaces conform to?

� Does your IR support a ‘deposit’ interface? If so, what is it?

� How is metadata and content passed across the interface? Are there any
limitations in what can be carried?

	Introduction
	Brief overview of main IR software
	Technical criteria
	Complex objects
	Metadata
	Identifiers
	Machine interfaces (services)

